mirror of
https://github.com/idanoo/nzart-exam-generator.git
synced 2024-12-04 14:23:10 +00:00
Adding files to automatically run script
This commit is contained in:
parent
d32379193d
commit
2be4c24c5a
917
files/N1.TXT
Normal file
917
files/N1.TXT
Normal file
@ -0,0 +1,917 @@
|
||||
% FILENAME = N1.TXT
|
||||
% Regulations
|
||||
% Release version 4, October 2006
|
||||
% Q44 modified 6 March 2012
|
||||
% further mods 6 September 2012
|
||||
|
||||
%Question: 1
|
||||
#1.1 The Amateur Service may be briefly defined as:
|
||||
|
||||
a private radio service for personal gain and public benefit
|
||||
|
||||
a public radio service used for public service communications
|
||||
|
||||
a radiocommunication service for the purpose of self-training, intercommunication and technical investigation
|
||||
|
||||
a private radio service intended only for emergency communications
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 2
|
||||
#1.2 The organisation responsible for the International Radio Regulations is the:
|
||||
|
||||
European Radiocommunications Office
|
||||
|
||||
United Nations
|
||||
|
||||
International Telecommunication Union
|
||||
|
||||
European Telecommunication Standards Institute
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 3
|
||||
#1.3 New Zealand's views on international radio regulatory matters are coordinated by the:
|
||||
|
||||
New Zealand Association of Radio Transmitters (NZART)
|
||||
|
||||
Ministry of Business, Innovation, and Employment
|
||||
|
||||
International Amateur Radio Union (IARU)
|
||||
|
||||
Prime Minister's Office
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 4
|
||||
#1.4 For regulatory purposes the world is divided into regions each with different radio spectrum allocations. New Zealand is in:
|
||||
|
||||
Region 1
|
||||
|
||||
Region 2
|
||||
|
||||
Region 3
|
||||
|
||||
Region 4
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 5
|
||||
#1.5 The prime document for the administration of the Amateur Service in New Zealand is the:
|
||||
|
||||
New Zealand Radiocommunications Regulations
|
||||
|
||||
Broadcasting Act
|
||||
|
||||
Radio Amateur's Handbook
|
||||
|
||||
minutes of the International Telecommunication Union meetings
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 6
|
||||
#1.6 The administration of the Amateur Service in New Zealand is by:
|
||||
|
||||
Ministry of Business, Innovation, and Employment Radio Spectrum Management Group
|
||||
|
||||
the Area Code administrators of New Zealand Post
|
||||
|
||||
the Radio Communications Division of the Ministry of Police
|
||||
|
||||
your local council public relations section
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 7
|
||||
#1.7 An Amateur Station is a station:
|
||||
|
||||
in the public radio service
|
||||
|
||||
using radiocommunications for a commercial purpose
|
||||
|
||||
using equipment for training new radiocommunications operators
|
||||
|
||||
in the Amateur Service
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 8
|
||||
#1.8 A General Amateur Operator Certificate of Competency can be inspected by an authorised officer from the Ministry of Business, Innovation, and Employment:
|
||||
|
||||
at any time
|
||||
|
||||
on any business day
|
||||
|
||||
before 9 p.m.
|
||||
|
||||
only on public holidays
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 9
|
||||
#1.9 The fundamental regulations controlling the Amateur Service are to be found in:
|
||||
|
||||
the International Radio Regulations from the ITU
|
||||
|
||||
the Radio Amateur's Handbook
|
||||
|
||||
the NZART Callbook
|
||||
|
||||
on the packet radio bulletin-board
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 10
|
||||
#1.10 You must have a General Amateur Operator Certificate of Competency to:
|
||||
|
||||
transmit on public-service frequencies
|
||||
|
||||
retransmit shortwave broadcasts
|
||||
|
||||
repair radio equipment
|
||||
|
||||
transmit in bands allocated to the Amateur Service
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 11
|
||||
#1.11 A New Zealand General Amateur Operator Certificate of Competency allows you to operate:
|
||||
|
||||
anywhere in the world
|
||||
|
||||
anywhere in New Zealand and in any other country that recognises the Certificate
|
||||
|
||||
within 50 km of your home station location
|
||||
|
||||
only at your home address
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 12
|
||||
#1.12 With a General Amateur Operator Certificate of Competency you may operate transmitters in your station:
|
||||
|
||||
one at a time
|
||||
|
||||
one at a time, except for emergency communications
|
||||
|
||||
any number at one time
|
||||
|
||||
any number, so long as they are transmitting on different bands
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 13
|
||||
#1.13 You must keep the following document at your amateur station:
|
||||
|
||||
your General Amateur Operator Certificate of Competency
|
||||
|
||||
a copy of the Rules and Regulations for the Amateur Service
|
||||
|
||||
a copy of the Radio Amateur's Handbook for instant reference
|
||||
|
||||
a chart showing the amateur radio bands
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 14
|
||||
#1.14 An Amateur Station is one which is:
|
||||
|
||||
operated by the holder of a General Amateur Operator Certificate of Competency on the amateur radio bands
|
||||
|
||||
owned and operated by a person who is not engaged professionally in radio communications
|
||||
|
||||
used exclusively to provide two-way communication in connection with activities of amateur sporting organisations
|
||||
|
||||
used primarily for emergency communications during floods, earthquakes and similar disasters.
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 15
|
||||
#1.15 If the qualified operator of an amateur radio station is absent overseas, the home station may be used by:
|
||||
|
||||
any member of the immediate family to maintain contact with only the qualified operator
|
||||
|
||||
any person with an appropriate General Amateur Operator Certificate of Competency
|
||||
|
||||
the immediate family to communicate with any amateur radio operator
|
||||
|
||||
the immediate family if a separate callsign for mobile use has been obtained by the absent operator
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 16
|
||||
#1.16 All amateur stations, regardless of the mode of transmission used, must be equipped with:
|
||||
|
||||
a reliable means for determining the operating radio frequency
|
||||
|
||||
a dummy antenna
|
||||
|
||||
an overmodulation indicating device
|
||||
|
||||
a dc power meter
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 17
|
||||
#1.17 An amateur station may transmit unidentified signals:
|
||||
|
||||
when making a brief test not intended for reception by anyone else
|
||||
|
||||
when conducted on a clear frequency when no interference will be caused
|
||||
|
||||
when the meaning of transmitted information must be obscured to preserve secrecy
|
||||
|
||||
never, such transmissions are not permitted
|
||||
|
||||
% ans 4
|
||||
|
||||
|
||||
%Question: 18
|
||||
#1.18 You may operate your amateur radio station somewhere in New Zealand for short periods away from the location entered in the administration's database:
|
||||
|
||||
only during times of emergency
|
||||
|
||||
only after giving proper notice to the Ministry of Business, Innovation, and Employment
|
||||
|
||||
during an approved emergency practice
|
||||
|
||||
whenever you want to
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 19
|
||||
#1.19 Before operating an amateur station in a motor vehicle, you must:
|
||||
|
||||
give the Land Transport Authority the vehicle's licence plate number
|
||||
|
||||
inform the Ministry of Business, Innovation, and Employment
|
||||
|
||||
hold a current General Amateur Operator Certificate of Competency
|
||||
|
||||
obtain an additional callsign
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 20
|
||||
#1.20 An applicant for a New Zealand General Amateur Operator Certificate of Competency must first qualify by meeting the appropriate examination requirements. Application may then be made by:
|
||||
|
||||
anyone except a representative of a foreign government
|
||||
|
||||
only a citizen of New Zealand
|
||||
|
||||
anyone except an employee of the Ministry of Business, Innovation, and Employment
|
||||
|
||||
anyone
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 21
|
||||
#1.21 An amateur radio operator must have current New Zealand postal and email addresses so the Ministry of Business, Innovation, and Employment:
|
||||
|
||||
has a record of the location of each amateur station
|
||||
|
||||
can refund overpaid fees
|
||||
|
||||
can publish a callsign directory
|
||||
|
||||
can send mail to the operator
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 22
|
||||
#1.22 If you transmit from another amateur's station, the person responsible for its proper operation is:
|
||||
|
||||
both of you
|
||||
|
||||
the other amateur (the station’s owner)
|
||||
|
||||
you, the operator
|
||||
|
||||
the station owner, unless the station records show that you were the operator at the time
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 23
|
||||
#1.23 Your responsibility as a station operator is that you must:
|
||||
|
||||
allow another amateur to operate your station upon request
|
||||
|
||||
be present whenever the station is operated
|
||||
|
||||
be responsible for the proper operation of the station in accordance with the Radiocommunications Regulations
|
||||
|
||||
notify the Ministry of Business, Innovation, and Employment if another amateur acts as the operator
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 24
|
||||
#1.24 An amateur station must have a qualified operator:
|
||||
|
||||
only when training another amateur
|
||||
|
||||
whenever the station receiver is operated
|
||||
|
||||
whenever the station is used for transmitting
|
||||
|
||||
when transmitting and receiving
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 25
|
||||
#1.25 A log-book for recording stations worked:
|
||||
|
||||
is compulsory for every amateur radio operator
|
||||
|
||||
is recommended for all amateur radio operators
|
||||
|
||||
must list all messages sent
|
||||
|
||||
must record time in UTC
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 26
|
||||
#1.26 Unqualified persons in your family cannot transmit using your amateur station if they are alone with your equipment because they must:
|
||||
|
||||
not use your equipment without your permission
|
||||
|
||||
hold a General Amateur Operator Certificate of Competency before they are allowed to be operators
|
||||
|
||||
first know how to use the right abbreviations and Q signals
|
||||
|
||||
first know the right frequencies and emissions for transmitting
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 27
|
||||
#1.27 Amateur radio repeater equipment and frequencies in New Zealand are co-ordinated by:
|
||||
|
||||
the Ministry of Business, Innovation, and Employment
|
||||
|
||||
NZART branches in the main cities
|
||||
|
||||
repeater trustees
|
||||
|
||||
the NZART Frequency Management and Technical Advisory Group.
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 28
|
||||
#1.28 A qualified operator of an amateur radio station may permit anyone to:
|
||||
|
||||
operate the station under direct supervision
|
||||
|
||||
send business traffic to any other station.
|
||||
|
||||
pass brief comments of a personal nature provided no fees or other considerations are requested or accepted
|
||||
|
||||
use the station for Morse sending practice
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 29
|
||||
#1.29 The minimum age for a person to hold a General Amateur Operator Certificate of Competency is:
|
||||
|
||||
12 years
|
||||
|
||||
16 years
|
||||
|
||||
21 years
|
||||
|
||||
there is no age limit
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 30
|
||||
#1.30 If you contact another station and your signal is strong and perfectly readable, you should:
|
||||
|
||||
turn on your speech processor
|
||||
|
||||
reduce your SWR
|
||||
|
||||
not make any changes, otherwise you may lose contact
|
||||
|
||||
reduce your transmitter power output to the minimum needed to maintain contact
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 31
|
||||
#1.31 The age when an amateur radio operator is required to surrender the General Amateur Operator Certificate of Competency is:
|
||||
|
||||
65 years
|
||||
|
||||
70 years
|
||||
|
||||
75 years
|
||||
|
||||
there is no age limit
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 32
|
||||
#1.32 Peak envelope power (PEP) output is the:
|
||||
|
||||
average power output at the crest of the modulating cycle
|
||||
|
||||
total power contained in each sideband
|
||||
|
||||
carrier power output
|
||||
|
||||
transmitter power output on key-up condition
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 33
|
||||
#1.33 The maximum power output permitted from an amateur station is:
|
||||
|
||||
that needed to overcome interference from other stations
|
||||
|
||||
30 watt PEP
|
||||
|
||||
specified in the amateur radio General User Radio Licence
|
||||
|
||||
1000 watt mean power or 2000 watt PEP
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 34
|
||||
#1.34 The transmitter power output for amateur stations at all times is:
|
||||
|
||||
25 watt PEP minimum output
|
||||
|
||||
that needed to overcome interference from other stations
|
||||
|
||||
1000 watt PEP maximum
|
||||
|
||||
the minimum power necessary to communicate and within the terms of the amateur radio GURL
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 35
|
||||
#1.35 You identify your amateur station by transmitting your:
|
||||
|
||||
"handle"
|
||||
|
||||
callsign
|
||||
|
||||
first name and your location
|
||||
|
||||
full name
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 36
|
||||
#1.36 This callsign could be allocated to an amateur radio operator in New Zealand:
|
||||
|
||||
ZK-CKF
|
||||
|
||||
ZLC5
|
||||
|
||||
ZL2HF
|
||||
|
||||
ZMX4432
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 37
|
||||
#1.37 The callsign of a New Zealand amateur radio station:
|
||||
|
||||
is listed in the administration's database
|
||||
|
||||
can be any sequence of characters made-up by the operator
|
||||
|
||||
can never be changed
|
||||
|
||||
is changed annually
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 38
|
||||
#1.38 These letters are generally used for the first letters in New Zealand amateur radio callsigns:
|
||||
|
||||
ZS
|
||||
|
||||
ZL
|
||||
|
||||
VK
|
||||
|
||||
LZ
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 39
|
||||
#1.39 The figures normally used in New Zealand amateur radio callsigns are:
|
||||
|
||||
any two-digit number, 45 through 99
|
||||
|
||||
any two-digit number, 22 through 44
|
||||
|
||||
a single digit, 5 through 9
|
||||
|
||||
a single digit, 1 through 4
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 40
|
||||
#1.40 Before re-issuing, a relinquished callsign is normally kept for:
|
||||
|
||||
1 year
|
||||
|
||||
2 years
|
||||
|
||||
0 years
|
||||
|
||||
5 years
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 41
|
||||
#1.41 A General Amateur Operator Certificate of Competency authorises the use of:
|
||||
|
||||
all amateur radio transmitting and receiving apparatus
|
||||
|
||||
a TV receiver
|
||||
|
||||
amateur radio transmitting apparatus only
|
||||
|
||||
marine mobile equipment
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 42
|
||||
#1.42 General Amateur Operator Certificates of Competency and callsigns are issued pursuant to the Regulations by the:
|
||||
|
||||
New Zealand Association of Radio Transmitters (NZART)
|
||||
|
||||
Ministry of Business, Innovation, and Employment Approved Radio Examiners
|
||||
|
||||
Department of Internal Affairs
|
||||
|
||||
Prime Minister's Office
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 43
|
||||
#1.43 To replace a written copy of your General Amateur Operator Certificate of Competency you should:
|
||||
|
||||
Apply to an Approved Radio Examiner to re-sit the examination
|
||||
|
||||
Download an application form from the Department of Internal Affairs website
|
||||
|
||||
Download an application form from the Ministry's website (or have an Approved Radio Examiner do this for you)
|
||||
|
||||
Download and print one from the official database (or have an Approved Radio Examiner do this for you)
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 44
|
||||
#1.44 A General Amateur Operator Certificate of Competency holder must advise permanent changes to postal and email addresses and update the official database records within:
|
||||
|
||||
One Calendar month
|
||||
|
||||
7 days
|
||||
|
||||
10 days
|
||||
|
||||
one year
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 45
|
||||
#1.45 A General Amateur Operator Certificate of Competency:
|
||||
|
||||
expires after 6 months
|
||||
|
||||
contains the unique callsign(s) to be used by that operator
|
||||
|
||||
is transferable
|
||||
|
||||
permits the transmission of radio waves
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 46
|
||||
#1.46 A General Amateur Operator Certificate of Competency is normally issued for:
|
||||
|
||||
1 year
|
||||
|
||||
5 years
|
||||
|
||||
10 years
|
||||
|
||||
life
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 47
|
||||
#1.47 A licence that provides for a given class of radio transmitter to be used without requiring a licence in the owner’s own name is known as:
|
||||
|
||||
a repeater licence
|
||||
|
||||
a general user radio licence
|
||||
|
||||
a beacon licence
|
||||
|
||||
a reciprocal licence
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 48
|
||||
#1.48 The holder of a General Amateur Operator Certificate of Competency may permit anyone to:
|
||||
|
||||
use an amateur radio station to communicate with other radio amateurs
|
||||
|
||||
pass brief messages of a personal nature provided no fees or other consideration are requested or accepted
|
||||
|
||||
operate the amateur station under the supervision and in the presence of a qualified operator
|
||||
|
||||
take part in communications only if prior written permission is received from the Ministry of Business, Innovation, and Employment
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 49
|
||||
#1.49 International communications on behalf of third parties may be transmitted by an amateur station only if:
|
||||
|
||||
prior remuneration has been received
|
||||
|
||||
such communications have been authorised by the countries concerned
|
||||
|
||||
the communication is transmitted in secret code
|
||||
|
||||
English is used to identify the station at the end of each transmission
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 50
|
||||
#1.50 The term "amateur third party communications" refers to:
|
||||
|
||||
a simultaneous communication between three operators
|
||||
|
||||
the transmission of commercial or secret messages
|
||||
|
||||
messages to or on behalf of non-licensed people or organisations
|
||||
|
||||
none of the above
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 51
|
||||
#1.51 The Morse code signal SOS is sent by a station:
|
||||
|
||||
with an urgent message
|
||||
|
||||
in grave and imminent danger and requiring immediate assistance
|
||||
|
||||
making a report about a shipping hazard
|
||||
|
||||
sending important weather information
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 52
|
||||
#1.52 If you hear distress traffic and are unable to render assistance, you should:
|
||||
|
||||
maintain watch until you are certain that assistance is forthcoming
|
||||
|
||||
enter the details in the log book and take no further action
|
||||
|
||||
take no action
|
||||
|
||||
tell all other stations to cease transmitting
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 53
|
||||
#1.53 The transmission of messages in a secret code by the operator of an amateur station is:
|
||||
|
||||
permitted when communications are transmitted on behalf of a government agency
|
||||
|
||||
permitted when communications are transmitted on behalf of third parties
|
||||
|
||||
permitted during amateur radio contests
|
||||
|
||||
not permitted except for control signals by the licensees of remote beacon or repeater stations
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 54
|
||||
#1.54 Messages from an amateur station in one of the following are expressly forbidden:
|
||||
|
||||
ASCII
|
||||
|
||||
International No. 2 code
|
||||
|
||||
Baudot code
|
||||
|
||||
secret cipher
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 55
|
||||
#1.55 The term "harmful interference" means:
|
||||
|
||||
interference which obstructs or repeatedly interrupts radiocommunication services
|
||||
|
||||
an antenna system which accidentally falls on to a neighbour's property
|
||||
|
||||
a receiver with the audio volume unacceptably loud
|
||||
|
||||
interference caused by a station of a secondary service
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 56
|
||||
#1.56 When interference to the reception of radiocommunications is caused by the operation of an amateur station, the station operator:
|
||||
|
||||
must immediately comply with any action required by the Ministry of Business, Innovation, and Employment to prevent the interference
|
||||
|
||||
may continue to operate with steps taken to reduce the interference when the station operator can afford it
|
||||
|
||||
may continue to operate without restrictions
|
||||
|
||||
is not obligated to take any action
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 57
|
||||
#1.57 An amateur radio operator may knowingly interfere with another radio communication or signal:
|
||||
|
||||
when the operator of another station is acting in an illegal manner
|
||||
|
||||
when another station begins transmitting on a frequency you already occupy
|
||||
|
||||
never
|
||||
|
||||
when the interference is unavoidable because of crowded band conditions
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 58
|
||||
#1.58 After qualifying and gaining a General Amateur Operator Certificate of Competency you are permitted to:
|
||||
|
||||
operate on any frequency in the entire radio spectrum
|
||||
|
||||
first operate for three months on amateur radio bands below 5 MHz and bands above 25 MHz to log fifty or more contacts
|
||||
|
||||
ignore published bandplans
|
||||
|
||||
make frequent tune-up transmissions at 10 MHz
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 59
|
||||
#1.59 Morse code is permitted for use by:
|
||||
|
||||
only operators who have passed a Morse code test
|
||||
|
||||
those stations with computers to decode it
|
||||
|
||||
any amateur radio operator
|
||||
|
||||
only those stations equipped for headphone reception
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 60
|
||||
#1.60 As a New Zealand amateur radio operator you may communicate with:
|
||||
|
||||
only amateur stations within New Zealand
|
||||
|
||||
only stations running more than 500w PEP output
|
||||
|
||||
only stations using the same transmission mode
|
||||
|
||||
other amateur stations world-wide
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 61
|
||||
#1.61 As a New Zealand amateur radio operator you:
|
||||
|
||||
must regularly operate using dry batteries
|
||||
|
||||
should use shortened antennas
|
||||
|
||||
may train for and support disaster relief activities
|
||||
|
||||
must always have solar-powered equipment in reserve
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 62
|
||||
#1.62 Your General Amateur Operator Certificate of Competency permits you to:
|
||||
|
||||
work citizen band stations
|
||||
|
||||
establish and operate an earth station in the amateur satellite service
|
||||
|
||||
service commercial radio equipment over 1 kW output
|
||||
|
||||
re-wire fixed household electrical supply mains
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 63
|
||||
#1.63 You hear a station using the callsign “VK3XYZ stroke ZL” on your local VHF repeater. This is:
|
||||
|
||||
a callsign not authorised for use in New Zealand
|
||||
|
||||
a confused illegal operator
|
||||
|
||||
the station of an overseas visitor
|
||||
|
||||
probably an unlicensed person using stolen equipment
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 64
|
||||
#1.64 The abbreviation “HF” refers to the radio spectrum between:
|
||||
|
||||
2 MHz and 10 MHz
|
||||
|
||||
3 MHz and 30 MHz
|
||||
|
||||
20 MHz and 200 MHz
|
||||
|
||||
30 MHz and 300 MHz
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 65
|
||||
#1.65 Bandplans showing the transmission modes for New Zealand amateur radio bands are developed and published for the mutual respect and advantage of all operators:
|
||||
|
||||
to ensure that your operations do not impose problems on other operators and that their operations do not impact on you
|
||||
|
||||
to keep experimental developments contained
|
||||
|
||||
to reduce the number of modes in any one band
|
||||
|
||||
to keep overseas stations separate from local stations
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 66
|
||||
#1.66 The abbreviation “VHF” refers to the radio spectrum between:
|
||||
|
||||
2 MHz and 10 MHz
|
||||
|
||||
3 MHz and 30 MHz
|
||||
|
||||
30 MHz and 300 MHz
|
||||
|
||||
200 MHz and 2000 MHz
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 67
|
||||
#1.67 An amateur radio operator must be able to:
|
||||
|
||||
converse in the languages shown on the Certificate of Competency
|
||||
|
||||
read Morse code at 12 words-per-minute
|
||||
|
||||
monitor standard frequency transmissions
|
||||
|
||||
verify that transmissions are within an authorised frequency band
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 68
|
||||
#1.68 An amateur station may be closed down at any time by:
|
||||
|
||||
a demand from an irate neighbour experiencing television interference
|
||||
|
||||
a demand from an authorised official of the Ministry of Business, Innovation, and Employment
|
||||
|
||||
an official from your local council
|
||||
|
||||
anyone until your aerials are made less unsightly
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 69
|
||||
#1.69 A General Amateur Operator Certificate of Competency:
|
||||
|
||||
can never be revoked
|
||||
|
||||
gives a waiver over copyright
|
||||
|
||||
does not confer on its holder a monopoly on the use of any frequency or band
|
||||
|
||||
can be readily transferred
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 70
|
||||
#1.70 A person in distress:
|
||||
|
||||
must use correct communication procedures
|
||||
|
||||
may use any means available to attract attention
|
||||
|
||||
must give position with a grid reference
|
||||
|
||||
must use allocated safety frequencies
|
||||
|
||||
% ans 2
|
||||
|
145
files/N10.TXT
Normal file
145
files/N10.TXT
Normal file
@ -0,0 +1,145 @@
|
||||
% FILENAME = N10.TXT
|
||||
% Safety
|
||||
% Release version 2, January 2000
|
||||
|
||||
%Question: 1
|
||||
#10.1 You can safely remove an unconscious person from contact with a high
|
||||
voltage source by:
|
||||
|
||||
pulling an arm or a leg
|
||||
|
||||
wrapping the person in a blanket and pulling to a safe area
|
||||
|
||||
calling an electrician
|
||||
|
||||
turning off the high voltage and then removing the person
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 2
|
||||
#10.2 For your safety, before checking a fault in a mains operated power supply
|
||||
unit, first:
|
||||
|
||||
short the leads of the filter capacitor
|
||||
|
||||
turn off the power and remove the power plug
|
||||
|
||||
check the action of the capacitor bleeder resistance
|
||||
|
||||
remove and check the fuse in the power supply
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 3
|
||||
#10.3 Wires carrying high voltages in a transmitter should be well insulated to
|
||||
avoid:
|
||||
|
||||
short circuits
|
||||
|
||||
overheating
|
||||
|
||||
over modulation
|
||||
|
||||
SWR effects
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 4
|
||||
#10.4 A residual current device is recommended for protection in a mains power
|
||||
circuit because it:
|
||||
|
||||
reduces electrical interference from the circuit
|
||||
|
||||
removes power to the circuit when the phase and neutral currents are not equal
|
||||
|
||||
removes power to the circuit when the current in the phase wire equals the
|
||||
current in the earth wire
|
||||
|
||||
limits the power provided to the circuit
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 5
|
||||
#10.5 An earth wire should be connected to the metal chassis of a
|
||||
mains-operated power supply to ensure that if a fault develops, the chassis:
|
||||
|
||||
does not develop a high voltage with respect to earth
|
||||
|
||||
does not develop a high voltage with respect to the phase lead
|
||||
|
||||
becomes a conductor to bleed away static charge
|
||||
|
||||
provides a path to ground in case of lightning strikes
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 6
|
||||
#10.6 The purpose of using three wires in the mains power cord and plug on
|
||||
amateur radio equipment is to:
|
||||
|
||||
make it inconvenient to use
|
||||
|
||||
prevent the chassis from becoming live in case of an internal short to the
|
||||
chassis
|
||||
|
||||
prevent the plug from being reversed in the wall outlet
|
||||
|
||||
prevent short circuits
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 7
|
||||
#10.7 The correct colour coding for the phase wire in a flexible mains lead is:
|
||||
|
||||
brown
|
||||
|
||||
blue
|
||||
|
||||
yellow and green
|
||||
|
||||
white
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 8
|
||||
#10.8 The correct colour coding for the neutral wire in a flexible mains lead
|
||||
is:
|
||||
|
||||
brown
|
||||
|
||||
blue
|
||||
|
||||
yellow and green
|
||||
|
||||
white
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 9
|
||||
#10.9 The correct colour coding for the earth wire in a flexible mains lead is:
|
||||
|
||||
brown
|
||||
|
||||
blue
|
||||
|
||||
yellow and green
|
||||
|
||||
white
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 10
|
||||
#10.10 An isolating transformer is used to:
|
||||
|
||||
ensure that faulty equipment connected to it will blow a fuse in the
|
||||
distribution board
|
||||
|
||||
ensure that no voltage is developed between either output lead and ground
|
||||
|
||||
ensure that no voltage is developed between the output leads
|
||||
|
||||
step down the mains voltage to a safe value
|
||||
|
||||
% ans 2
|
||||
|
||||
|
271
files/N11.TXT
Normal file
271
files/N11.TXT
Normal file
@ -0,0 +1,271 @@
|
||||
% FILENAME = N11.TXT
|
||||
% Semiconductors
|
||||
% Release version 2, January 2000
|
||||
% Q 11 modified 6 Mar 2012
|
||||
|
||||
%Question: 1
|
||||
#11.1 The basic semiconductor amplifying device is a:
|
||||
|
||||
diode
|
||||
|
||||
transistor
|
||||
|
||||
pn-junction
|
||||
|
||||
silicon gate
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 2
|
||||
#11.2 Zener diodes are normally used as:
|
||||
|
||||
RF detectors
|
||||
|
||||
AF detectors
|
||||
|
||||
current regulators
|
||||
|
||||
voltage regulators
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 3
|
||||
#11.3 The voltage drop across a germanium signal diode when conducting is
|
||||
about:
|
||||
|
||||
0.3V
|
||||
|
||||
0.6V
|
||||
|
||||
0.7V
|
||||
|
||||
1.3V
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 4
|
||||
#11.4 A bipolar transistor has three terminals named:
|
||||
|
||||
base, emitter and drain
|
||||
|
||||
collector, base and source
|
||||
|
||||
emitter, base and collector
|
||||
|
||||
drain, source and gate
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 5
|
||||
#11.5 The three leads from a PNP transistor are named the:
|
||||
|
||||
collector, source, drain
|
||||
|
||||
gate, source, drain
|
||||
|
||||
drain, base, source
|
||||
|
||||
collector, emitter, base
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 6
|
||||
#11.6 A low-level signal is applied to a transistor circuit input and a
|
||||
higher-level signal is present at the output. This effect is known as:
|
||||
|
||||
amplification
|
||||
|
||||
detection
|
||||
|
||||
modulation
|
||||
|
||||
rectification
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 7
|
||||
#11.7 The type of rectifier diode in almost exclusive use in power supplies is:
|
||||
|
||||
lithium
|
||||
|
||||
germanium
|
||||
|
||||
silicon
|
||||
|
||||
copper-oxide
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 8
|
||||
#11.8 One important application for diodes is recovering information from
|
||||
transmitted signals. This is referred to as:
|
||||
|
||||
biasing
|
||||
|
||||
rejuvenation
|
||||
|
||||
ionisation
|
||||
|
||||
demodulation
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 9
|
||||
#11.9 In a forward biased pn junction, the electrons:
|
||||
|
||||
flow from p to n
|
||||
|
||||
flow from n to p
|
||||
|
||||
remain in the n region
|
||||
|
||||
remain in the p region
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 10
|
||||
#11.10 The following material is considered to be a semiconductor:
|
||||
|
||||
copper
|
||||
|
||||
sulphur
|
||||
|
||||
silicon
|
||||
|
||||
tantalum
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 11
|
||||
#11.11 A varactor diode acts like a variable:
|
||||
|
||||
resistor
|
||||
|
||||
voltage regulator
|
||||
|
||||
capacitor
|
||||
|
||||
inductor
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 12
|
||||
#11.12 A semiconductor is said to be doped when small quantities of the
|
||||
following are added:
|
||||
|
||||
electrons
|
||||
|
||||
protons
|
||||
|
||||
ions
|
||||
|
||||
impurities
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 13
|
||||
#11.13 The connections to a semiconductor diode are known as:
|
||||
|
||||
cathode and drain
|
||||
|
||||
anode and cathode
|
||||
|
||||
gate and source
|
||||
|
||||
collector and base
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 14
|
||||
#11.14 Bipolar transistors usually have:
|
||||
|
||||
4 connecting leads
|
||||
|
||||
3 connecting leads
|
||||
|
||||
2 connecting leads
|
||||
|
||||
1 connecting lead
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 15
|
||||
#11.15 A semiconductor is described as a "general purpose audio NPN device".
|
||||
This is a:
|
||||
|
||||
triode
|
||||
|
||||
silicon diode
|
||||
|
||||
bipolar transistor
|
||||
|
||||
field effect transistor
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 16
|
||||
#11.16 Two basic types of bipolar transistors are:
|
||||
|
||||
p-channel and n-channel types
|
||||
|
||||
NPN and PNP types
|
||||
|
||||
diode and triode types
|
||||
|
||||
varicap and zener types
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 17
|
||||
#11.17 A transistor can be destroyed in a circuit by:
|
||||
|
||||
excessive light
|
||||
|
||||
excessive heat
|
||||
|
||||
saturation
|
||||
|
||||
cut-off
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 18
|
||||
#11.18 To bias a transistor to cut-off, the base must be:
|
||||
|
||||
at the collector potential
|
||||
|
||||
at the emitter potential
|
||||
|
||||
mid-way between collector and emitter potentials
|
||||
|
||||
mid-way between the collector and the supply potentials
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 19
|
||||
#11.19 Two basic types of field effect transistors are:
|
||||
|
||||
n-channel and p-channel
|
||||
|
||||
NPN and PNP
|
||||
|
||||
germanium and silicon
|
||||
|
||||
inductive and capacitive
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 20
|
||||
#11.20 A semiconductor with leads labelled gate, drain and source, is best
|
||||
described as a:
|
||||
|
||||
bipolar transistor
|
||||
|
||||
silicon diode
|
||||
|
||||
gated transistor
|
||||
|
||||
field-effect transistor
|
||||
|
||||
% ans 4
|
||||
|
154
files/N12.TXT
Normal file
154
files/N12.TXT
Normal file
@ -0,0 +1,154 @@
|
||||
% FILENAME = N12.TXT
|
||||
% Device Recognition
|
||||
% Release version 3, October 2001
|
||||
|
||||
%QUESTION: 1
|
||||
#12.1 <img src = "npn.gif" align = right width = 177 height = 90>
|
||||
<extralines = 1 totallines = 6 >
|
||||
In the figure shown, 2 represents the:
|
||||
|
||||
collector of a pnp transistor
|
||||
|
||||
emitter of an npn transistor
|
||||
|
||||
base of an npn transistor
|
||||
|
||||
source of a junction FET
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 2
|
||||
#12.2 <img src = "npn.gif" align = right width = 177 height = 90>
|
||||
<extralines = 1 totallines = 6 >
|
||||
In the figure shown, 3 represents the:
|
||||
|
||||
drain of a junction FET
|
||||
|
||||
collector of an npn transistor
|
||||
|
||||
emitter of a pnp transistor
|
||||
|
||||
base of an npn transistor
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 3
|
||||
#12.3 <img src = "pnp.gif" align = right width = 177 height = 90>
|
||||
<extralines = 1 totallines = 6 >
|
||||
In the figure shown, 2 represents the:
|
||||
|
||||
base of a pnp transistor
|
||||
|
||||
drain of a junction FET
|
||||
|
||||
gate of a junction FET
|
||||
|
||||
emitter of a pnp transistor
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 4
|
||||
#12.4 <img src = "pnp.gif" align = right width = 177 height = 90>
|
||||
<extralines = 1 totallines = 6 >
|
||||
In the figure shown, 1 represents the:
|
||||
|
||||
collector of a pnp transistor
|
||||
|
||||
gate of a junction FET
|
||||
|
||||
source of a MOSFET
|
||||
|
||||
emitter of a pnp transistor
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 5
|
||||
#12.5 <img src = "jfet.gif" align = right width = 167 height = 90>
|
||||
<extralines = 1 totallines = 6 >
|
||||
In the figure shown, 2 represents the:
|
||||
|
||||
drain of a p-channel junction FET
|
||||
|
||||
collector of an npn transistor
|
||||
|
||||
gate of an n-channel junction FET
|
||||
|
||||
base of a pnp transistor
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 6
|
||||
#12.6 <img src = "jfet.gif" align = right width = 167 height = 90>
|
||||
<extralines = 1 totallines = 6 >
|
||||
In the figure shown, 3 represents the:
|
||||
|
||||
source of an n-channel junction FET
|
||||
|
||||
gate of a p-channel junction FET
|
||||
|
||||
emitter of a pnp transistor
|
||||
|
||||
drain of an n-channel junction FET
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 7
|
||||
#12.7 <img src = "mosfet.gif" align = right width = 177 height = 90>
|
||||
<extralines = 1 totallines = 6 >
|
||||
In the figure shown, 2 represents the:
|
||||
|
||||
gate of a MOSFET
|
||||
|
||||
base of a dual bipolar transistor
|
||||
|
||||
anode of a silicon controlled rectifier
|
||||
|
||||
cathode of a dual diode
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 8
|
||||
#12.8 <img src = "mosfet.gif" align = right width = 177 height = 90>
|
||||
<extralines = 1 totallines = 6 >
|
||||
The figure shown represents a:
|
||||
|
||||
dual bipolar transistor
|
||||
|
||||
dual diode
|
||||
|
||||
dual varactor diode
|
||||
|
||||
dual gate MOSFET
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 9
|
||||
#12.9 <img src = "tetrode.gif" align = right width = 154 height = 90>
|
||||
<extralines = 1 totallines = 6 >
|
||||
In the figure shown, 3 represents the:
|
||||
|
||||
filament of a tetrode
|
||||
|
||||
anode of a triode
|
||||
|
||||
grid of a tetrode
|
||||
|
||||
screen grid of a pentode
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 10
|
||||
#12.10 <img src = "tetrode.gif" align = right width = 154 height = 90>
|
||||
<extralines = 1 totallines = 6 >
|
||||
In the figure shown, 5 represents the:
|
||||
|
||||
grid of a tetrode
|
||||
|
||||
screen grid of a tetrode
|
||||
|
||||
heater of a pentode
|
||||
|
||||
grid of a triode
|
||||
|
||||
% ans 2
|
||||
|
147
files/N13.TXT
Normal file
147
files/N13.TXT
Normal file
@ -0,0 +1,147 @@
|
||||
% FILENAME = N13.TXT
|
||||
% Meters and Measuring
|
||||
% Release version 2, January 2000
|
||||
|
||||
%Question: 1
|
||||
#13.1 An ohmmeter measures the:
|
||||
|
||||
value of any resistance placed between its terminals
|
||||
|
||||
impedance of any component placed between its terminals
|
||||
|
||||
power factor of any inductor or capacitor placed between its terminals
|
||||
|
||||
voltage across any resistance placed between its terminals
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 2
|
||||
#13.2 A VSWR meter switched to the "reverse" position provides an indication
|
||||
of:
|
||||
|
||||
power output in watts
|
||||
|
||||
relative reflected voltage
|
||||
|
||||
relative forward voltage
|
||||
|
||||
reflected power in dB
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 2
|
||||
#13.3 The correct instrument for measuring the supply current to an amplifier
|
||||
is a:
|
||||
|
||||
wattmeter
|
||||
|
||||
voltmeter
|
||||
|
||||
ammeter
|
||||
|
||||
ohmmeter
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 4
|
||||
#13.4 The following meter could be used to measure the power supply current
|
||||
drawn by a small hand-held transistorised receiver:
|
||||
|
||||
a power meter
|
||||
|
||||
an RF ammeter
|
||||
|
||||
a DC ammeter
|
||||
|
||||
an electrostatic voltmeter
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 5
|
||||
#13.5 When measuring the current drawn by a light bulb from a DC supply, the
|
||||
meter will act in circuit as:
|
||||
|
||||
an insulator
|
||||
|
||||
a low value resistance
|
||||
|
||||
a perfect conductor
|
||||
|
||||
an extra current drain
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 6
|
||||
#13.6 When measuring the current drawn by a receiver from a power supply, the
|
||||
current meter should be placed:
|
||||
|
||||
in parallel with both receiver power supply leads
|
||||
|
||||
in parallel with one of the receiver power leads
|
||||
|
||||
in series with both receiver power leads
|
||||
|
||||
in series with one of the receiver power leads
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 7
|
||||
#13.7 An ammeter should not be connected directly across the terminals of a 12
|
||||
volt car battery because:
|
||||
|
||||
the resulting high current will probably destroy the ammeter
|
||||
|
||||
no current will flow because no other components are in the circuit
|
||||
|
||||
the battery voltage will be too low for a measurable current to flow
|
||||
|
||||
the battery voltage will be too high for a measurable current to flow
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 8
|
||||
#13.8 A good ammeter should have:
|
||||
|
||||
a very high internal resistance
|
||||
|
||||
a resistance equal to that of all other components in the circuit
|
||||
|
||||
a very low internal resistance
|
||||
|
||||
an infinite resistance
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 9
|
||||
#13.9 A good voltmeter should have:
|
||||
|
||||
a very high internal resistance
|
||||
|
||||
a resistance equal to that of all other components in the circuit
|
||||
|
||||
a very low internal resistance
|
||||
|
||||
an inductive reactance
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 10
|
||||
#13.10 An rms-reading voltmeter is used to measure a 50 Hz sinewave of known
|
||||
peak voltage 14 volt. The meter reading will be about:
|
||||
|
||||
14 volt
|
||||
|
||||
28 volt
|
||||
|
||||
10 volt
|
||||
|
||||
50 volt
|
||||
|
||||
% ans 3
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
146
files/N14.TXT
Normal file
146
files/N14.TXT
Normal file
@ -0,0 +1,146 @@
|
||||
% FILENAME = N14.TXT
|
||||
% Decibels, Amplification and Attenuation
|
||||
% Release version 2 December 1999
|
||||
|
||||
%Question: 1
|
||||
#14.1 The input to an amplifier is 1 volt rms and the output 10 volt rms. This is an
|
||||
increase of:
|
||||
|
||||
3 dB
|
||||
|
||||
6 dB
|
||||
|
||||
10 dB
|
||||
|
||||
20 dB
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 2
|
||||
#14.2 The input to an amplifier is 1 volt rms and output 100 volt rms. This is an
|
||||
increase of:
|
||||
|
||||
10 dB
|
||||
|
||||
20 dB
|
||||
|
||||
40 dB
|
||||
|
||||
100 dB
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 3
|
||||
#14.3 An amplifier has a gain of 40 dB. The ratio of the rms output voltage to the rms
|
||||
input voltage is:
|
||||
|
||||
20
|
||||
|
||||
40
|
||||
|
||||
100
|
||||
|
||||
400
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 4
|
||||
#14.4 A transmitter power amplifier has a gain of 20 dB. The ratio of the output
|
||||
power to the input power is:
|
||||
|
||||
10
|
||||
|
||||
20
|
||||
|
||||
40
|
||||
|
||||
100
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 5
|
||||
#14.5 An attenuator network comprises two 100 ohm resistors in series with the input
|
||||
applied across both resistors and the output taken from across one of them. The
|
||||
voltage attenuation of the network is:
|
||||
|
||||
3 dB
|
||||
|
||||
6 dB
|
||||
|
||||
50 dB
|
||||
|
||||
100 dB
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 6
|
||||
#14.6 An attenuator network has 10 volt rms applied to its input with 1 volt rms
|
||||
measured at its output. The attenuation of the network is:
|
||||
|
||||
6 dB
|
||||
|
||||
10 dB
|
||||
|
||||
20 dB
|
||||
|
||||
40 dB
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 7
|
||||
#14.7 An attenuator network has 10 volt rms applied to its input with 5 volt rms
|
||||
measured at its output. The attenuation of the network is:
|
||||
|
||||
6 dB
|
||||
|
||||
10 dB
|
||||
|
||||
20 dB
|
||||
|
||||
40 dB
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 8
|
||||
#14.8 Two amplifiers with gains of 10 dB and 40 dB are connected in cascade. The
|
||||
gain of the combination is:
|
||||
|
||||
8 dB
|
||||
|
||||
30 dB
|
||||
|
||||
50 dB
|
||||
|
||||
400 dB
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 9
|
||||
#14.9 An amplifier with a gain of 20 dB has a -10 dB attenuator connected in cascade.
|
||||
The gain of the combination is:
|
||||
|
||||
8 dB
|
||||
|
||||
10 dB
|
||||
|
||||
-10 dB
|
||||
|
||||
-200 dB
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 10
|
||||
#14.10 Each stage of a three-stage amplifier provides 5 dB gain. The total
|
||||
amplification is:
|
||||
|
||||
10 dB
|
||||
|
||||
15 dB
|
||||
|
||||
25 dB
|
||||
|
||||
125 dB
|
||||
|
||||
% ans 2
|
||||
|
||||
|
158
files/N15.TXT
Normal file
158
files/N15.TXT
Normal file
@ -0,0 +1,158 @@
|
||||
% FILENAME = N15.TXT
|
||||
% HF Station Arrangement
|
||||
% Release version 3, October 2001
|
||||
|
||||
%QUESTION: 1
|
||||
#15.1 In the block diagram shown, the "linear amplifier" is:
|
||||
<img src = "hfsta.gif" align = center width = 600 height = 170>
|
||||
<totallines = 16 >
|
||||
|
||||
an amplifier to remove distortion in signals from the transceiver
|
||||
|
||||
an optional amplifier to be switched in when higher power is required
|
||||
|
||||
an amplifier with all components arranged in-line
|
||||
|
||||
a push-pull amplifier to cancel second harmonic distortion
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 2
|
||||
#15.2 In the block diagram shown, the additional signal path above the
|
||||
"linear amplifier" block indicates that:
|
||||
<img src = "hfsta.gif" align = center width = 600 height = 170>
|
||||
<totallines = 16 >
|
||||
|
||||
some power is passed around the linear amplifier for stability
|
||||
|
||||
"feed-forward" correction is being used to increase linearity
|
||||
|
||||
the linear amplifier input and output terminals may be short-circuited
|
||||
|
||||
the linear amplifier may be optionally switched out of circuit to reduce output power
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 3
|
||||
#15.3 In the block diagram shown, the "low pass filter" must be rated to:
|
||||
<img src = "hfsta.gif" align = center width = 600 height = 170>
|
||||
<totallines = 16 >
|
||||
|
||||
carry the full power output from the station
|
||||
|
||||
filter out higher-frequency modulation components for maximum intelligibility
|
||||
|
||||
filter out high-amplitude sideband components
|
||||
|
||||
emphasise low-speed Morse code output
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 4
|
||||
#15.4 In the block diagram shown, the "SWR bridge" is a:
|
||||
<img src = "hfsta.gif" align = center width = 600 height = 170>
|
||||
<totallines = 16 >
|
||||
|
||||
switched wave rectifier for monitoring power output
|
||||
|
||||
static wave reducer to minimize static electricity from the antenna
|
||||
|
||||
device to monitor the standing-wave-ratio on the antenna feedline
|
||||
|
||||
short wave rectifier to protect against lightning strikes
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 5
|
||||
#15.5 In the block diagram shown, the "antenna switch":
|
||||
<img src = "hfsta.gif" align = center width = 600 height = 170>
|
||||
<totallines = 16 >
|
||||
|
||||
switches the transmitter output to the dummy load for tune-up purposes
|
||||
|
||||
switches the antenna from transmit to receive
|
||||
|
||||
switches the frequency of the antenna for operation on different bands
|
||||
|
||||
switches surplus output power from the antenna to the dummy load to avoid distortion.
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 6
|
||||
#15.6 In the block diagram shown, the "antenna tuner":
|
||||
<img src = "hfsta.gif" align = center width = 600 height = 170>
|
||||
<totallines = 16 >
|
||||
|
||||
adjusts the resonant frequency of the antenna to minimize harmonic radiation
|
||||
|
||||
adjusts the resonant frequency of the antenna to maximise power output
|
||||
|
||||
changes the standing-wave-ratio on the transmission line to the antenna
|
||||
|
||||
adjusts the impedance of the antenna system seen at the transceiver output
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 7
|
||||
#15.7 In the block diagram shown, the "dummy load" is:
|
||||
<img src = "hfsta.gif" align = center width = 600 height = 170>
|
||||
<totallines = 16 >
|
||||
|
||||
used to allow adjustment of the transmitter without causing interference to
|
||||
others
|
||||
|
||||
a load used to absorb surplus power which is rejected by the antenna system
|
||||
|
||||
used to absorb high-voltage impulses caused by lightning strikes to the antenna
|
||||
|
||||
an additional load used to compensate for a badly-tuned antenna system
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 8
|
||||
#15.8 In the block diagram shown, the connection between the SWR bridge and the
|
||||
antenna switch is normally a:
|
||||
<img src = "hfsta.gif" align = center width = 600 height = 170>
|
||||
<totallines = 16 >
|
||||
|
||||
twisted pair cable
|
||||
|
||||
coaxial cable
|
||||
|
||||
quarter-wave matching section
|
||||
|
||||
short length of balanced ladder-line
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 9
|
||||
#15.9 In this block diagram, the block designated "antenna tuner" is not normally necessary when:
|
||||
<img src = "hfsta.gif" align = center width = 600 height = 170>
|
||||
<totallines = 16 >
|
||||
|
||||
the antenna input impedance is 50 ohms
|
||||
|
||||
a half wave antenna is used, fed at one end
|
||||
|
||||
the antenna is very long compared to a wavelength
|
||||
|
||||
the antenna is very short compared to a wavelength
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 10
|
||||
#15.10 In the block diagram shown, the connection between the "antenna tuner"
|
||||
and the "antenna" could be made with:
|
||||
<img src = "hfsta.gif" align = center width = 600 height = 170>
|
||||
<totallines = 16 >
|
||||
|
||||
three-wire mains power cable
|
||||
|
||||
heavy hook-up wire
|
||||
|
||||
50 ohm coaxial cable
|
||||
|
||||
an iron-cored transformer
|
||||
|
||||
% ans 3
|
||||
|
314
files/N16.TXT
Normal file
314
files/N16.TXT
Normal file
@ -0,0 +1,314 @@
|
||||
% FILENAME = N25.TXT
|
||||
% Receiver Block Diagrams
|
||||
% Release version 3, October 2001
|
||||
% Q 15 and 19 changed 6 Mar 2012
|
||||
|
||||
%Question: 1
|
||||
#16.1 In the block diagram of the receiver shown, the "RF amplifier":
|
||||
<img src = "ssbrx.gif" align = center width = 600 height = 161>
|
||||
<totallines = 15>
|
||||
|
||||
decreases random fluctuation noise
|
||||
|
||||
is a restoring filter amplifier
|
||||
|
||||
increases the incoming signal level
|
||||
|
||||
changes the signal frequency
|
||||
|
||||
% ans 3
|
||||
|
||||
|
||||
%Question: 2
|
||||
#16.2 In the block diagram of the receiver shown, the "mixer":
|
||||
<img src = "ssbrx.gif" align = center width = 600 height = 161>
|
||||
<totallines = 15>
|
||||
|
||||
combines signals at two different frequencies to produce one at an intermediate frequency
|
||||
|
||||
combines sidebands to produce a stronger signal
|
||||
|
||||
discriminates against SSB and AM signals
|
||||
|
||||
inserts a carrier wave to produce a true FM signal
|
||||
|
||||
% ans 1
|
||||
|
||||
|
||||
%Question: 3
|
||||
#16.3 In the block diagram of the receiver shown, the output frequency of the
|
||||
"oscillator" is:
|
||||
<img src = "ssbrx.gif" align = center width = 600 height = 161>
|
||||
<totallines = 15>
|
||||
|
||||
the same as that of the incoming received signal
|
||||
|
||||
the same as that of the IF frequency
|
||||
|
||||
different from both the incoming signal and IF frequencies
|
||||
|
||||
at a low audio frequency
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 4
|
||||
#16.4 In the block diagram of the receiver shown, the "filter" rejects:
|
||||
<img src = "ssbrx.gif" align = center width = 600 height = 161>
|
||||
<totallines = 15>
|
||||
|
||||
AM and RTTY signals
|
||||
|
||||
unwanted mixer outputs
|
||||
|
||||
noise bursts
|
||||
|
||||
broadcast band signals
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 5
|
||||
#16.5 In the block diagram of the receiver shown, the "IF amplifier" is an:
|
||||
<img src = "ssbrx.gif" align = center width = 600 height = 161>
|
||||
<totallines = 15 >
|
||||
|
||||
isolation frequency amplifier
|
||||
|
||||
intelligence frequency amplifier
|
||||
|
||||
indeterminate frequency amplifier
|
||||
|
||||
intermediate frequency amplifier
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 6
|
||||
#16.6 In the block diagram of the receiver shown, the "product detector":
|
||||
<img src = "ssbrx.gif" align = center width = 600 height = 161>
|
||||
<totallines = 15>
|
||||
|
||||
produces an 800 Hz beat note
|
||||
|
||||
separates CW and SSB signals
|
||||
|
||||
rejects AM signals
|
||||
|
||||
translates signals to audio frequencies
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 7
|
||||
#16.7 In the block diagram of the receiver shown, the "AF amplifier":
|
||||
<img src = "ssbrx.gif" align = center width = 600 height = 161>
|
||||
<totallines = 15>
|
||||
|
||||
rejects AM and RTTY signals
|
||||
|
||||
amplifies audio frequency signals
|
||||
|
||||
has a very narrow passband
|
||||
|
||||
restores ambiance to the audio
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 8
|
||||
#16.8 In the block diagram of the receiver shown, the "BFO" stands for:
|
||||
<img src = "ssbrx.gif" align = center width = 600 height = 161>
|
||||
<totallines = 15>
|
||||
|
||||
bad frequency obscurer
|
||||
|
||||
basic frequency oscillator
|
||||
|
||||
beat frequency oscillator
|
||||
|
||||
band filter oscillator
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 9
|
||||
#16.9 In the block diagram of the receiver shown, most of the receiver gain is in the:
|
||||
<img src = "ssbrx.gif" align = center width = 600 height = 161>
|
||||
<totallines = 15>
|
||||
|
||||
RF amplifier
|
||||
|
||||
IF amplifier
|
||||
|
||||
AF amplifier
|
||||
|
||||
mixer
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 10
|
||||
#16.10 In the block diagram of the receiver shown, the "RF amplifier":
|
||||
<img src = "fmrx.gif" align = center width = 600 height = 151>
|
||||
<totallines = 16>
|
||||
|
||||
decreases random fluctuation noise
|
||||
|
||||
masks strong noise
|
||||
|
||||
should produce little internal noise
|
||||
|
||||
changes the signal frequency
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 11
|
||||
#16.11 In the block diagram of the receiver shown, the "mixer":
|
||||
<img src = "fmrx.gif" align = center width = 600 height = 151>
|
||||
<totallines = 16>
|
||||
|
||||
changes the signal frequency
|
||||
|
||||
rejects SSB and CW signals
|
||||
|
||||
protects against receiver overload
|
||||
|
||||
limits the noise on the signal
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 12
|
||||
#16.12 In the receiver shown, when receiving a signal, the output frequency of the "oscillator" is:
|
||||
<img src = "fmrx.gif" align = center width = 600 height = 151>
|
||||
<totallines = 16 >
|
||||
|
||||
the same as that of the signal
|
||||
|
||||
the same as that of the IF amplifier
|
||||
|
||||
of constant amplitude and frequency
|
||||
|
||||
passed through the following filter
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 13
|
||||
#16.13 In the block diagram of the receiver shown, the "limiter":
|
||||
<img src = "fmrx.gif" align = center width = 600 height = 151>
|
||||
<totallines = 16>
|
||||
|
||||
limits the signal to a constant amplitude
|
||||
|
||||
rejects SSB and CW signals
|
||||
|
||||
limits the frequency shift of the signal
|
||||
|
||||
limits the phase shift of the signal
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 14
|
||||
#16.14 In the block diagram of the receiver shown, the "frequency demodulator"
|
||||
could be implemented with a:
|
||||
<img src = "fmrx.gif" align = center width = 600 height = 151>
|
||||
<totallines = 16>
|
||||
|
||||
product detector
|
||||
|
||||
phase-locked loop
|
||||
|
||||
full-wave rectifier
|
||||
|
||||
low-pass filter
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 15
|
||||
#16.15 In the block diagram of the receiver shown, the "AF amplifier":
|
||||
<img src = "fmrx.gif" align = center width = 600 height = 151>
|
||||
<totallines = 16>
|
||||
|
||||
amplifies stereo signals
|
||||
|
||||
amplifies speech frequencies
|
||||
|
||||
is an all frequency amplifier
|
||||
|
||||
must be fitted with a tone control
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 16
|
||||
#16.16 In this receiver, an audio frequency gain control
|
||||
would be associated with the block labelled:
|
||||
<img src = "fmrx.gif" align = center width = 600 height = 151>
|
||||
<totallines = 16>
|
||||
|
||||
AF amplifier
|
||||
|
||||
frequency demodulator
|
||||
|
||||
speaker, phones
|
||||
|
||||
IF amplifier
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 17
|
||||
#16.17 In the block diagram of the receiver shown, the selectivity would be set by the:
|
||||
<img src = "fmrx.gif" align = center width = 600 height = 151>
|
||||
<totallines = 16>
|
||||
|
||||
AF amplifier
|
||||
|
||||
mixer
|
||||
|
||||
limiter
|
||||
|
||||
filter
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 18
|
||||
#16.18 In the FM communications receiver shown in the block diagram, the "filter"
|
||||
bandwidth is typically:
|
||||
<img src = "fmrx.gif" align = center width = 600 height = 151>
|
||||
<totallines = 16>
|
||||
|
||||
3 kHz
|
||||
|
||||
10 kHz
|
||||
|
||||
64 kHz
|
||||
|
||||
128 kHz
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 19
|
||||
#16.19 In the block diagram of the receiver shown, an automatic gain
|
||||
control (AGC) circuit would be associated with the:
|
||||
<img src = "fmrx.gif" align = center width = 600 height = 151>
|
||||
<totallines = 16>
|
||||
|
||||
Speaker
|
||||
|
||||
IF amplifier
|
||||
|
||||
RF filter
|
||||
|
||||
Oscillator
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 20
|
||||
#16.20 In the block diagram of the receiver shown, the waveform produced by the
|
||||
"oscillator" would ideally be a:
|
||||
<img src = "fmrx.gif" align = center width = 600 height = 151>
|
||||
<totallines = 16>
|
||||
|
||||
square wave
|
||||
|
||||
pulsed wave
|
||||
|
||||
sinewave
|
||||
|
||||
hybrid frequency wave
|
||||
|
||||
% ans 3
|
||||
|
||||
|
395
files/N17.TXT
Normal file
395
files/N17.TXT
Normal file
@ -0,0 +1,395 @@
|
||||
% FILENAME = N17.TXT
|
||||
% Receiver Operation
|
||||
% Release version 3, October 2001
|
||||
% Q 23 modified 6 Mar 2012
|
||||
|
||||
%QUESTION: 1
|
||||
#17.1 The frequency stability of a receiver is its ability to:
|
||||
|
||||
stay tuned to the desired signal
|
||||
|
||||
track the incoming signal as it drifts
|
||||
|
||||
provide a frequency standard
|
||||
|
||||
provide a digital readout
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 2
|
||||
#17.2 The sensitivity of a receiver specifies:
|
||||
|
||||
the bandwidth of the RF preamplifier
|
||||
|
||||
the stability of the oscillator
|
||||
|
||||
its ability to receive weak signals
|
||||
|
||||
its ability to reject strong signals
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 3
|
||||
#17.3 Of two receivers, the one capable of receiving the weakest signal will have:
|
||||
|
||||
an RF gain control
|
||||
|
||||
the least internally-generated noise
|
||||
|
||||
the loudest audio output
|
||||
|
||||
the greatest tuning range
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 4
|
||||
#17.4 The figure in a receiver's specifications which indicates its sensitivity is the:
|
||||
|
||||
bandwidth of the IF in kilohertz
|
||||
|
||||
audio output in watts
|
||||
|
||||
signal plus noise to noise ratio
|
||||
|
||||
number of RF amplifiers
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 5
|
||||
#17.5 If two receivers are compared, the more sensitive receiver will produce:
|
||||
|
||||
more than one signal
|
||||
|
||||
less signal and more noise
|
||||
|
||||
more signal and less noise
|
||||
|
||||
a steady oscillator drift
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 6
|
||||
#17.6 The ability of a receiver to separate signals close in frequency is called its:
|
||||
|
||||
noise figure
|
||||
|
||||
sensitivity
|
||||
|
||||
bandwidth
|
||||
|
||||
selectivity
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 7
|
||||
#17.7 A receiver with high selectivity has a:
|
||||
|
||||
wide bandwidth
|
||||
|
||||
wide tuning range
|
||||
|
||||
narrow bandwidth
|
||||
|
||||
narrow tuning range
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 8
|
||||
#17.8 The BFO in a superhet receiver operates on a frequency nearest to that of its:
|
||||
|
||||
RF amplifier
|
||||
|
||||
audio amplifier
|
||||
|
||||
local oscillator
|
||||
|
||||
IF amplifier
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 9
|
||||
#17.9 To receive Morse code signals, a BFO is employed in a superhet receiver to:
|
||||
|
||||
produce IF signals
|
||||
|
||||
beat with the local oscillator signal to produce sidebands
|
||||
|
||||
produce an audio tone to beat with the IF signal
|
||||
|
||||
beat with the IF signal to produce an audio tone
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 10
|
||||
#17.10 The following transmission mode is usually demodulated by a product detector:
|
||||
|
||||
pulse modulation
|
||||
|
||||
double sideband full carrier modulation
|
||||
|
||||
frequency modulation
|
||||
|
||||
single sideband suppressed carrier modulation
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 11
|
||||
#17.11 A superhet receiver for SSB reception has an insertion oscillator to:
|
||||
|
||||
replace the suppressed carrier for detection
|
||||
|
||||
phase out the unwanted sideband signal
|
||||
|
||||
reduce the passband of the IF stages
|
||||
|
||||
beat with the received carrier to produce the other sideband
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 12
|
||||
#17.12 A stage in a receiver with input and output circuits tuned to the received frequency is the:
|
||||
|
||||
RF amplifier
|
||||
|
||||
local oscillator
|
||||
|
||||
audio frequency amplifier
|
||||
|
||||
detector
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 13
|
||||
#17.13 An RF amplifier ahead of the mixer stage in a superhet receiver:
|
||||
|
||||
enables the receiver to tune a greater frequency range
|
||||
|
||||
means no BFO stage is needed
|
||||
|
||||
makes it possible to receive SSB signals
|
||||
|
||||
increases the sensitivity of the receiver
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 14
|
||||
#17.14 A communication receiver may have several IF filters of different bandwidths. The operator selects one to:
|
||||
|
||||
improve the S-meter readings
|
||||
|
||||
improve the receiver sensitivity
|
||||
|
||||
improve the reception of different types of signal
|
||||
|
||||
increase the noise received
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 15
|
||||
#17.15 The stage in a superhet receiver with a tuneable input and fixed tuned output is the:
|
||||
|
||||
RF amplifier
|
||||
|
||||
mixer stage
|
||||
|
||||
IF amplifier
|
||||
|
||||
local oscillator
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 16
|
||||
#17.16 The mixer stage of a superhet receiver:
|
||||
|
||||
produces spurious signals
|
||||
|
||||
produces an intermediate frequency signal
|
||||
|
||||
acts as a buffer stage
|
||||
|
||||
demodulates SSB signals
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 17
|
||||
#17.17 A 7 MHz signal and a 16 MHz oscillator are applied to a mixer stage. The output will contain the input frequencies and:
|
||||
|
||||
8 and 9 MHz
|
||||
|
||||
7 and 9 MHz
|
||||
|
||||
9 and 23 MHz
|
||||
|
||||
3.5 and 9 MHz
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 18
|
||||
#17.18 Selectivity in a superhet receiver is achieved primarily in the:
|
||||
|
||||
RF amplifier
|
||||
|
||||
Mixer
|
||||
|
||||
IF amplifier
|
||||
|
||||
Audio stage
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 19
|
||||
#17.19 The abbreviation AGC means:
|
||||
|
||||
attenuating gain capacitor
|
||||
|
||||
automatic gain control
|
||||
|
||||
anode-grid capacitor
|
||||
|
||||
amplified grid conductance
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 20
|
||||
#17.20 The AGC circuit in a receiver usually controls the:
|
||||
|
||||
audio stage
|
||||
|
||||
mixer stage
|
||||
|
||||
power supply
|
||||
|
||||
RF and IF stages
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 21
|
||||
#17.21 The tuning control of a superhet receiver changes the tuned frequency of the:
|
||||
|
||||
audio amplifier
|
||||
|
||||
IF amplifier
|
||||
|
||||
local oscillator
|
||||
|
||||
post-detector amplifier
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 22
|
||||
#17.22 A superhet receiver, with an IF at 500 kHz, is receiving a 14 MHz signal. The local oscillator frequency is:
|
||||
|
||||
14.5 MHz
|
||||
|
||||
19 MHz
|
||||
|
||||
500 kHz
|
||||
|
||||
28 MHz
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 23
|
||||
#17.23 An audio amplifier is necessary in an AM receiver because:
|
||||
|
||||
signals leaving the detector are weak
|
||||
|
||||
the carrier frequency must be replaced
|
||||
|
||||
the signal requires demodulation
|
||||
|
||||
RF signals are not heard by the human ear
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 24
|
||||
#17.24 The audio output transformer in a receiver is required to:
|
||||
|
||||
step up the audio gain
|
||||
|
||||
protect the loudspeaker from high currents
|
||||
|
||||
improve the audio tone
|
||||
|
||||
match the output impedance of the audio amplifier to the speaker
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 25
|
||||
#17.25 If the carrier insertion oscillator is counted, then a single conversion superhet receiver has:
|
||||
|
||||
one oscillator
|
||||
|
||||
two oscillators
|
||||
|
||||
three oscillators
|
||||
|
||||
four oscillators
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 26
|
||||
#17.26 A superhet receiver, with a 500 kHz IF, is receiving a signal at 21.0 MHz. A strong unwanted signal at 22 MHz is interfering. The cause is:
|
||||
|
||||
insufficient IF selectivity
|
||||
|
||||
the 22 MHz signal is out-of-band
|
||||
|
||||
22 MHz is the image frequency
|
||||
|
||||
insufficient RF gain
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 27
|
||||
#17.27 A superhet receiver receives an incoming signal of 3540 kHz and the local oscillator produces a signal of 3995 kHz. The IF amplifier is tuned to:
|
||||
|
||||
455 kHz
|
||||
|
||||
3540 kHz
|
||||
|
||||
3995 kHz
|
||||
|
||||
7435 kHz
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 28
|
||||
#17.28 A double conversion receiver designed for SSB reception has a carrier insertion oscillator and:
|
||||
|
||||
one IF stage and one local oscillator
|
||||
|
||||
two IF stages and one local oscillator
|
||||
|
||||
two IF stages and two local oscillators
|
||||
|
||||
two IF stages and three local oscillators
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 29
|
||||
#17.29 An advantage of a double conversion receiver is that it:
|
||||
|
||||
does not drift off frequency
|
||||
|
||||
produces a louder audio signal
|
||||
|
||||
has improved image rejection characteristics
|
||||
|
||||
is a more sensitive receiver
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 30
|
||||
#17.30 A receiver squelch circuit:
|
||||
|
||||
automatically keeps the audio output at maximum level
|
||||
|
||||
silences the receiver speaker during periods of no received signal
|
||||
|
||||
provides a noisy operating environment
|
||||
|
||||
is not suitable for pocket-size receivers
|
||||
|
||||
% ans 2
|
||||
|
319
files/N18.TXT
Normal file
319
files/N18.TXT
Normal file
@ -0,0 +1,319 @@
|
||||
% FILENAME = N18.TXT
|
||||
% Transmitter Block Diagrams
|
||||
% Release version 3, October 2001
|
||||
|
||||
%Question 1
|
||||
#18.1 In the transmitter block diagram shown, the "oscillator":
|
||||
<img src = "ssbtx.gif" align = center width = 483 height = 145>
|
||||
<totallines = 15 >
|
||||
|
||||
is variable in frequency
|
||||
|
||||
generates an audio frequency tone during tests
|
||||
|
||||
uses a crystal for good frequency stability
|
||||
|
||||
may have a calibrated dial
|
||||
|
||||
% ans 3
|
||||
|
||||
|
||||
%Question 2
|
||||
#18.2 In the transmitter block diagram shown, the "balanced modulator":
|
||||
<img src = "ssbtx.gif" align = center width = 483 height = 145>
|
||||
<totallines = 15 >
|
||||
|
||||
balances the high and low frequencies in the audio signal
|
||||
|
||||
performs double sideband suppressed carrier modulation
|
||||
|
||||
acts as a tone control
|
||||
|
||||
balances the standing wave ratio
|
||||
|
||||
% ans 2
|
||||
|
||||
|
||||
%Question 3
|
||||
#18.3 In the transmitter block diagram shown, the "filter":
|
||||
<img src = "ssbtx.gif" align = center width = 483 height = 145>
|
||||
<totallines = 15 >
|
||||
|
||||
removes mains hum from the audio signal
|
||||
|
||||
suppresses unwanted harmonics of the RF signal
|
||||
|
||||
removes one sideband from the modulated signal
|
||||
|
||||
removes the carrier component from the modulated signal
|
||||
|
||||
% ans 3
|
||||
|
||||
|
||||
%Question 4
|
||||
#18.4 In the transmitter block diagram shown, the "mixer":
|
||||
<img src = "ssbtx.gif" align = center width = 483 height = 145>
|
||||
<totallines = 15 >
|
||||
|
||||
adds the correct proportion of carrier to the SSB signal
|
||||
|
||||
mixes the audio and RF signals in the correct proportions
|
||||
|
||||
translates the SSB signal to the required frequency
|
||||
|
||||
mixes the two sidebands in the correct proportions
|
||||
|
||||
% ans 3
|
||||
|
||||
|
||||
%Question 5
|
||||
#18.5 In the transmitter block diagram shown, the "linear amplifier":
|
||||
<img src = "ssbtx.gif" align = center width = 483 height = 145>
|
||||
<totallines = 15 >
|
||||
|
||||
has all components arranged in-line
|
||||
|
||||
amplifies the modulated signal with no distortion
|
||||
|
||||
aligns the two sidebands correctly
|
||||
|
||||
removes any unwanted amplitude modulation from the signal
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question 6
|
||||
#18.6 In the transmitter block diagram shown, the "VFO" is:
|
||||
<img src = "ssbtx.gif" align = center width = 483 height = 145>
|
||||
<totallines = 15 >
|
||||
|
||||
a voice frequency oscillator
|
||||
|
||||
a varactor fixed oscillator
|
||||
|
||||
a virtual faze oscillator
|
||||
|
||||
a variable frequency oscillator
|
||||
|
||||
% ans 4
|
||||
|
||||
|
||||
%Question 7
|
||||
#18.7 In the transmitter block diagram shown, the "master oscillator" produces:
|
||||
<img src = "cwtx.gif" align = center width = 404 height = 163>
|
||||
<totallines = 13>
|
||||
|
||||
a steady signal at the required carrier frequency
|
||||
|
||||
a pulsating signal at the required carrier frequency
|
||||
|
||||
a 800 Hz signal to modulate the carrier
|
||||
|
||||
a modulated CW signal
|
||||
|
||||
% ans 1
|
||||
|
||||
|
||||
%Question 8
|
||||
#18.8 In the transmitter block diagram shown, the "driver buffer":
|
||||
<img src = "cwtx.gif" align = center width = 404 height = 163>
|
||||
<totallines = 13>
|
||||
|
||||
filters any sharp edges from the input signal
|
||||
|
||||
drives the power amplifier into saturation
|
||||
|
||||
provides isolation between the oscillator and power amplifier
|
||||
|
||||
changes the frequency of the master oscillator signal
|
||||
|
||||
% ans 3
|
||||
|
||||
|
||||
%Question 9
|
||||
#18.9 In the transmitter block diagram shown, the "Morse key":
|
||||
<img src = "cwtx.gif" align = center width = 404 height = 163>
|
||||
<totallines = 13>
|
||||
|
||||
turns the DC power to the transmitter on and off
|
||||
|
||||
allows the oscillator signal to pass only when the key is depressed
|
||||
|
||||
changes the frequency of the transmitted signal when the key is
|
||||
depressed
|
||||
|
||||
adds an 800 Hz audio tone to the signal when the key is depressed
|
||||
|
||||
% ans 2
|
||||
|
||||
|
||||
|
||||
%Question 10
|
||||
#18.10 In the transmitter block diagram shown, the "power amplifier":
|
||||
<img src = "cwtx.gif" align = center width = 404 height = 163>
|
||||
<totallines = 13 >
|
||||
|
||||
need not have linear characteristics
|
||||
|
||||
amplifies the bandwidth of its input signal
|
||||
|
||||
must be adjusted during key-up conditions
|
||||
|
||||
should be water-cooled
|
||||
|
||||
% ans 1
|
||||
|
||||
|
||||
%Question 11
|
||||
#18.11 In the transmitter block diagram shown, the "speech amplifier":
|
||||
<img src = "fmtx.gif" align = center width = 600 height = 143>
|
||||
<totallines = 16 >
|
||||
|
||||
amplifies the audio signal from the microphone
|
||||
|
||||
is a spectral equalization entropy changer
|
||||
|
||||
amplifies only speech, while discriminating against background noises
|
||||
|
||||
shifts the frequency spectrum of the audio signal into the RF region
|
||||
|
||||
% ans 1
|
||||
|
||||
|
||||
%Question 12
|
||||
#18.12 In the transmitter block diagram shown, the "modulator":
|
||||
<img src = "fmtx.gif" align = center width = 600 height = 143>
|
||||
<totallines = 16>
|
||||
|
||||
is an amplitude modulator with feedback
|
||||
|
||||
is an SSB modulator with feedback
|
||||
|
||||
causes the speech waveform to gate the oscillator on and off
|
||||
|
||||
causes the speech waveform to shift the frequency of the oscillator
|
||||
|
||||
% ans 4
|
||||
|
||||
|
||||
%Question 13
|
||||
#18.13 In the transmitter block diagram shown, the "oscillator" is:
|
||||
<img src = "fmtx.gif" align = center width = 600 height = 143>
|
||||
<totallines = 16 >
|
||||
|
||||
an audio frequency oscillator
|
||||
|
||||
a variable frequency RF oscillator
|
||||
|
||||
a beat frequency oscillator
|
||||
|
||||
a variable frequency audio oscillator
|
||||
|
||||
% ans 2
|
||||
|
||||
|
||||
%Question 14
|
||||
#18.14 In the transmitter block diagram shown, the "frequency multiplier":
|
||||
<img src = "fmtx.gif" align = center width = 600 height = 143>
|
||||
<totallines = 16 >
|
||||
|
||||
translates the frequency of the modulated signal into the RF spectrum
|
||||
|
||||
changes the frequency of the speech signal
|
||||
|
||||
produces a harmonic of the oscillator signal
|
||||
|
||||
multiplies the oscillator signal by the speech signal
|
||||
|
||||
% ans 3
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
%Question 15
|
||||
#18.15 In the transmitter block diagram shown, the "power amplifier":
|
||||
<img src = "fmtx.gif" align = center width = 600 height = 143>
|
||||
<totallines = 16 >
|
||||
|
||||
increases the voltage of the mains to drive the antenna
|
||||
|
||||
amplifies the audio frequency component of the signal
|
||||
|
||||
amplifies the selected sideband to a suitable level
|
||||
|
||||
amplifies the RF signal to a suitable level
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question 16
|
||||
#18.16 The signal from an amplitude modulated transmitter consists of:
|
||||
|
||||
a carrier and two sidebands
|
||||
|
||||
a carrier and one sideband
|
||||
|
||||
no carrier and two sidebands
|
||||
|
||||
no carrier and one sideband
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question 17
|
||||
#18.17 The signal from a frequency modulated transmitter has:
|
||||
|
||||
an amplitude which varies with the modulating waveform
|
||||
|
||||
a frequency which varies with the modulating waveform
|
||||
|
||||
a single sideband which follows the modulating waveform
|
||||
|
||||
no sideband structure
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question 18
|
||||
#18.18 The signal from a balanced modulator consists of:
|
||||
|
||||
a carrier and two sidebands
|
||||
|
||||
a carrier and one sideband
|
||||
|
||||
no carrier and two sidebands
|
||||
|
||||
no carrier and one sideband
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question 19
|
||||
#18.19 The signal from a CW transmitter consists of:
|
||||
|
||||
a continuous, unmodulated RF waveform
|
||||
|
||||
a continuous RF waveform modulated with an 800 Hz Morse signal
|
||||
|
||||
an RF waveform which is keyed on and off to form Morse characters
|
||||
|
||||
a continuous RF waveform which changes frequency in synchronism with
|
||||
an applied Morse signal
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question 20
|
||||
#18.20 The following signal can be amplified using a non-linear
|
||||
amplifier:
|
||||
|
||||
SSB
|
||||
|
||||
FM
|
||||
|
||||
AM
|
||||
|
||||
DSBSC
|
||||
|
||||
% ans 2
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
134
files/N19.TXT
Normal file
134
files/N19.TXT
Normal file
@ -0,0 +1,134 @@
|
||||
% FILENAME = N19.TXT
|
||||
% Transmitter Theory
|
||||
% Release version 2, January 00
|
||||
|
||||
%QUESTION: 1
|
||||
#19.1 Morse code is usually transmitted by radio as:
|
||||
|
||||
an interrupted carrier
|
||||
|
||||
a voice modulated carrier
|
||||
|
||||
a continuous carrier
|
||||
|
||||
a series of clicks
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 2
|
||||
#19.2 To obtain high frequency stability in a transmitter, the VFO should be:
|
||||
|
||||
run from a non-regulated AC supply
|
||||
|
||||
in a plastic box
|
||||
|
||||
powered from a regulated DC supply
|
||||
|
||||
able to change frequency with temperature
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 3
|
||||
#19.3 SSB transmissions:
|
||||
|
||||
occupy about twice the bandwidth of AM transmissions
|
||||
|
||||
contain more information than AM transmissions
|
||||
|
||||
occupy about half the bandwidth of AM transmissions
|
||||
|
||||
are compatible with FM transmissions
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 4
|
||||
#19.4 The purpose of a balanced modulator in a SSB transmitter is to:
|
||||
|
||||
make sure that the carrier and both sidebands are in phase
|
||||
|
||||
make sure that the carrier and both sidebands are 180 degrees out of phase
|
||||
|
||||
ensure that the percentage of modulation is kept constant
|
||||
|
||||
suppress the carrier while producing two sidebands
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 5
|
||||
#19.5 Several stations advise that your FM simplex transmission in the "two metre" band is
|
||||
distorted. The cause might be that:
|
||||
|
||||
the transmitter modulation deviation is too high
|
||||
|
||||
your antenna is too low
|
||||
|
||||
the transmitter has become unsynchronised
|
||||
|
||||
your transmitter frequency split is incorrect
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 6
|
||||
#19.6 The driver stage of a transmitter is located:
|
||||
|
||||
before the power amplifier
|
||||
|
||||
between oscillator and buffer
|
||||
|
||||
with the frequency multiplier
|
||||
|
||||
after the output low-pass filter circuit
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 7
|
||||
#19.7 The purpose of the final amplifier in a transmitter is to:
|
||||
|
||||
increase the frequency of a signal
|
||||
|
||||
isolate the multiplier and later stages
|
||||
|
||||
produce a stable radio frequency
|
||||
|
||||
increase the power fed to the antenna
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 8
|
||||
#19.8 The difference between DC input power and RF power output of a transmitter RF amplifier:
|
||||
|
||||
radiates from the antenna
|
||||
|
||||
is dissipated as heat
|
||||
|
||||
is lost in the feedline
|
||||
|
||||
is due to oscillating current
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 9
|
||||
#19.9 The process of modulation allows:
|
||||
|
||||
information to be impressed on to a carrier
|
||||
|
||||
information to be removed from a carrier
|
||||
|
||||
voice and Morse code to be combined
|
||||
|
||||
none of these
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 10
|
||||
#19.10 The output power rating of a linear amplifier in a SSB transmitter is specified by the:
|
||||
|
||||
peak DC input power
|
||||
|
||||
mean AC input power
|
||||
|
||||
peak envelope power
|
||||
|
||||
unmodulated carrier power
|
||||
|
||||
% ans 3
|
264
files/N2.TXT
Normal file
264
files/N2.TXT
Normal file
@ -0,0 +1,264 @@
|
||||
% FILENAME = N2.TXT
|
||||
% Frequencies
|
||||
% Release version 4, October 2006
|
||||
% Q 14 no modification needed 6 Mar 2012
|
||||
|
||||
%Question 1
|
||||
#2.1 Amateur stations are often regarded as "frequency agile". This means:
|
||||
|
||||
operation is limited to frequency modulation
|
||||
|
||||
operators can choose to operate anywhere on a shared band
|
||||
|
||||
a bandswitch is required on all transceivers
|
||||
|
||||
on a shared band operators can change frequency to avoid interfering
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question 2
|
||||
#2.2 A new amateur radio operator is permitted to:
|
||||
|
||||
operate on all amateur bands other than VHF at least weekly using a computer for log-keeping
|
||||
|
||||
operate only on specified amateur bands for 3 months logging at least 50 contacts and retaining the log book for at least one year for possible official inspection
|
||||
|
||||
operate only on one fixed frequency in the amateur bands between 5 and 25 MHz for 6 months and then present the log book for official inspection
|
||||
|
||||
operate on amateur bands between 5 and 25 MHz as and when the operator chooses
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question 3
|
||||
#2.3 The frequency limits of the “80 metre band” are:
|
||||
|
||||
3.50 to 4.0 MHz
|
||||
|
||||
3.50 to 3.90 MHz
|
||||
|
||||
3.50 to 3.85 MHz
|
||||
|
||||
3.6 to 3.9 MHz
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question 4
|
||||
#2.4 In New Zealand the frequency limits of the “40 metre band” are:
|
||||
|
||||
7.00 to 7.10 MHz
|
||||
|
||||
7.00 to 7.15 MHz
|
||||
|
||||
7.00 to 7.30 MHz
|
||||
|
||||
7.10 to 7.40 MHz
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question 5
|
||||
#2.5 The frequency limits of the “20 metre band” are:
|
||||
|
||||
14.00 to 14.10 MHz
|
||||
|
||||
14.00 to 14.45 MHz
|
||||
|
||||
14.00 to 14.50 MHz
|
||||
|
||||
14.00 to 14.35 MHz
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question 6
|
||||
#2.6 The frequency limits of the “15 metre band” are:
|
||||
|
||||
21.00 to 21.35 MHz
|
||||
|
||||
21.00 to 21.40 MHz
|
||||
|
||||
21.00 to 21.45 MHz
|
||||
|
||||
21.00 to 21.50 MHz
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question 7
|
||||
#2.7 The frequency limits of the “10 metre band” are:
|
||||
|
||||
28.00 to 28.35 MHz
|
||||
|
||||
28.00 to 28.40 MHz
|
||||
|
||||
28.00 to 29.00 MHz
|
||||
|
||||
28.00 to 29.70 MHz
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question 8
|
||||
#2.8 The frequency limits of the “2 metre band” are:
|
||||
|
||||
144 to 149 MHz
|
||||
|
||||
144 to 148 MHz
|
||||
|
||||
146 to 148 MHz
|
||||
|
||||
144 to 150 MHz
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question 9
|
||||
#2.9 The frequency limits of the “70 centimetre band” are:
|
||||
|
||||
430 to 440 MHz
|
||||
|
||||
430 to 450 MHz
|
||||
|
||||
435 to 438 MHz
|
||||
|
||||
430 to 460 MHz
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question 10
|
||||
#2.10 The published bandplans for the New Zealand amateur bands:
|
||||
|
||||
are determined by the Ministry of Business, Innovation and Employment
|
||||
|
||||
change at each equinox
|
||||
|
||||
limit the operating frequencies of high-power stations
|
||||
|
||||
were developed by NZART in the interests of all radio amateurs
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question 11
|
||||
#2.11 Operation on the 130 to 190 kHz band requires:
|
||||
|
||||
a vertical half-wave antenna
|
||||
|
||||
special permission to operate in daylight hours
|
||||
|
||||
power output limited to 5 watt e.i.r.p. maximum
|
||||
|
||||
receivers with computers with sound cards
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question 12
|
||||
#2.12 Two bands where amateur satellites may operate are
|
||||
|
||||
28.0 to 29.7 MHz and 144.0 to 146.0 MHz
|
||||
|
||||
21.0 to 21.1 MHz and 146.0 to 148.0 MHz
|
||||
|
||||
3.5 to 3.8 MHz and 7.0 to 7.1 MHz
|
||||
|
||||
7.1 to 7.3 MHz and 10.1 to 10.15 MHz
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question 13
|
||||
#2.13 The band 50 to 51 MHz is available to:
|
||||
|
||||
amateur radio operators subject to special conditions
|
||||
|
||||
all amateur radio operators as part of the 6 metre band
|
||||
|
||||
television broadcasting only
|
||||
|
||||
radio broadcasting stations only
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question 14
|
||||
#2.14 The following amateur radio band is shared with other services:
|
||||
|
||||
14.0 to 14.35 MHz
|
||||
|
||||
7.2 to 7.3 MHz
|
||||
|
||||
18.068 to 18.168 MHz
|
||||
|
||||
144.0 to 146.0 MHz
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question 15
|
||||
#2.15 The frequency band 146 to 148 MHz is:
|
||||
|
||||
shared with other communication services
|
||||
|
||||
allocated exclusively for police communications
|
||||
|
||||
exclusive to repeater operation
|
||||
|
||||
reserved for emergency communications
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question 16
|
||||
#2.16 The following amateur radio band is shared with another service in New Zealand:
|
||||
|
||||
51 to 53 MHz
|
||||
|
||||
144 to 146 MHz
|
||||
|
||||
7.0 to 7.1 MHz
|
||||
|
||||
24.89 to 24.99 MHz
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question 17
|
||||
#2.17 The published New Zealand amateur radio bandplans are:
|
||||
|
||||
obligatory for all amateur radio operators to observe
|
||||
|
||||
recommended, and all amateur radio operators should follow them
|
||||
|
||||
to show where distant stations can be worked
|
||||
|
||||
for tests and experimental purposes only
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question 18
|
||||
#2.18 The following band is allocated to New Zealand amateur radio operators on a primary basis:
|
||||
|
||||
3.5 to 3.9 MHz
|
||||
|
||||
10.1 to 10.15 MHz
|
||||
|
||||
146 to 148 MHz
|
||||
|
||||
21 to 21.45 MHz
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question 19
|
||||
#2.19 When the Amateur Service is a secondary user of a band and another service is the primary user, this means:
|
||||
|
||||
nothing at all, all users have equal rights to operate
|
||||
|
||||
amateurs may only use the band during emergencies
|
||||
|
||||
the band may be used by amateurs provided they do not cause harmful interference to primary users
|
||||
|
||||
you may increase transmitter power to overcome any interference caused by primary users
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question 20
|
||||
#2.20 This rule applies if two amateur radio stations want to use the same frequency:
|
||||
|
||||
the operator with the newer qualification must yield the frequency to the more experienced operator
|
||||
|
||||
the station with the lower power output must yield the frequency to the station with the higher power output
|
||||
|
||||
both stations have an equal right to operate on the frequency, the second-comer courteously giving way after checking that the frequency is in use
|
||||
|
||||
stations in ITU Regions 1 and 2 must yield the frequency to stations in Region 3
|
||||
|
||||
% ans 3
|
265
files/N20.TXT
Normal file
265
files/N20.TXT
Normal file
@ -0,0 +1,265 @@
|
||||
% FILENAME = N20.TXT
|
||||
% Harmonics and Parasitics
|
||||
% Release version 2, January 00
|
||||
|
||||
%QUESTION: 1
|
||||
#20.1 A harmonic of a signal transmitted at 3525 kHz would be expected to occur at:
|
||||
|
||||
3573 kHz
|
||||
|
||||
7050 kHz
|
||||
|
||||
14025 kHz
|
||||
|
||||
21050 kHz
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 2
|
||||
#20.2 The third harmonic of 7 MHz is:
|
||||
|
||||
10 MHz
|
||||
|
||||
14 MHz
|
||||
|
||||
21 MHz
|
||||
|
||||
28 MHz
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 3
|
||||
#20.3 The fifth harmonic of 7 MHz is:
|
||||
|
||||
12 MHz
|
||||
|
||||
19 MHz
|
||||
|
||||
28 MHz
|
||||
|
||||
35 MHz
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 4
|
||||
#20.4 Excessive harmonic output may be produced in a transmitter by:
|
||||
|
||||
a linear amplifier
|
||||
|
||||
a low SWR
|
||||
|
||||
resonant circuits
|
||||
|
||||
overdriven amplifier stages
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 5
|
||||
#20.5 Harmonics may be produced in the RF power amplifier of a transmitter if:
|
||||
|
||||
the modulation level is too low
|
||||
|
||||
the modulation level is too high
|
||||
|
||||
the oscillator frequency is unstable
|
||||
|
||||
modulation is applied to more than one stage
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 6
|
||||
#20.6 Harmonics produced in an early stage of a transmitter may be reduced in a later stage by:
|
||||
|
||||
increasing the signal input to the final stage
|
||||
|
||||
using FET power amplifiers
|
||||
|
||||
using tuned circuit coupling between stages
|
||||
|
||||
using larger value coupling capacitors
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 7
|
||||
#20.7 Harmonics are produced when:
|
||||
|
||||
a resonant circuit is detuned
|
||||
|
||||
negative feedback is applied to an amplifier
|
||||
|
||||
a transistor is biased for class A operation
|
||||
|
||||
a sine wave is distorted
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 8
|
||||
#20.8 Harmonic frequencies are:
|
||||
|
||||
always lower in frequency than the fundamental frequency
|
||||
|
||||
at multiples of the fundamental frequency
|
||||
|
||||
any unwanted frequency above the fundamental frequency
|
||||
|
||||
any frequency causing TVI
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 9
|
||||
#20.9 An interfering signal from a transmitter has a frequency of 57 MHz. This signal could be the:
|
||||
|
||||
seventh harmonic of an 80 meter transmission
|
||||
|
||||
third harmonic of a 15 metre transmission
|
||||
|
||||
second harmonic of a 10 metre transmission
|
||||
|
||||
crystal oscillator operating on its fundamental
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 10
|
||||
#20.10 To minimise the radiation of one particular harmonic, one can use a:
|
||||
|
||||
wave trap in the transmitter output
|
||||
|
||||
resistor
|
||||
|
||||
high pass filter in the transmitter output
|
||||
|
||||
filter in the receiver lead
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 11
|
||||
#20.11 A low-pass filter is used in the antenna lead from a transmitter:
|
||||
|
||||
to reduce key clicks developed in a CW transmitter
|
||||
|
||||
to increase harmonic radiation
|
||||
|
||||
to eliminate chirp in CW transmissions
|
||||
|
||||
to reduce radiation of harmonics
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 12
|
||||
#20.12 The following is installed in the transmission line as close as possible to a HF transmitter to reduce harmonic output:
|
||||
|
||||
a middle-pass filter
|
||||
|
||||
a low-pass filter
|
||||
|
||||
a high-pass filter
|
||||
|
||||
a band-reject filter
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 13
|
||||
#20.13 A low pass filter will:
|
||||
|
||||
suppress sub-harmonics
|
||||
|
||||
reduce harmonics
|
||||
|
||||
always eliminate interference
|
||||
|
||||
improve harmonic radiation
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 14
|
||||
#20.14 A spurious transmission from a transmitter is:
|
||||
|
||||
an unwanted emission unrelated to the output signal frequency
|
||||
|
||||
an unwanted emission that is harmonically related to the modulating audio frequency
|
||||
|
||||
generated at 50 Hz
|
||||
|
||||
the main part of the modulated carrier
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 15
|
||||
#20.15 A parasitic oscillation:
|
||||
|
||||
is an unwanted signal developed in a transmitter
|
||||
|
||||
is generated by parasitic elements of a Yagi beam
|
||||
|
||||
does not cause any radio interference
|
||||
|
||||
is produced in a transmitter oscillator stage
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 16
|
||||
#20.16 Parasitic oscillations in a RF power amplifier can be suppressed by:
|
||||
|
||||
pulsing the supply voltage
|
||||
|
||||
placing suitable chokes, ferrite beads or resistors within the amplifier
|
||||
|
||||
screening all input leads
|
||||
|
||||
using split-stator tuning capacitors
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 17
|
||||
#20.17 Parasitic oscillations in the RF power amplifier stage of a transmitter may occur:
|
||||
|
||||
at low frequencies only
|
||||
|
||||
on harmonic frequencies
|
||||
|
||||
at high frequencies only
|
||||
|
||||
at high or low frequencies
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 18
|
||||
#20.18 Transmitter power amplifiers can generate parasitic oscillations on:
|
||||
|
||||
the transmitter's output frequency
|
||||
|
||||
harmonics of the transmitter's output frequency
|
||||
|
||||
frequencies unrelated to the transmitter's output frequency
|
||||
|
||||
VHF frequencies only
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 19
|
||||
#20.19 Parasitic oscillations tend to occur in:
|
||||
|
||||
high voltage rectifiers
|
||||
|
||||
high gain amplifier stages
|
||||
|
||||
antenna matching circuits
|
||||
|
||||
SWR bridges
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 20
|
||||
#20.20 Parasitic oscillations can cause interference. They are:
|
||||
|
||||
always the same frequency as the mains supply
|
||||
|
||||
always twice the operating frequency
|
||||
|
||||
not related to the operating frequency
|
||||
|
||||
three times the operating frequency
|
||||
|
||||
% ans 3
|
||||
|
||||
|
138
files/N21.TXT
Normal file
138
files/N21.TXT
Normal file
@ -0,0 +1,138 @@
|
||||
% FILENAME = N21.TXT
|
||||
% Power Supplies
|
||||
% Release version 2, January 2000
|
||||
% Q 6 corrected 6 Mar 2012
|
||||
|
||||
%Question: 1
|
||||
#21.1 A mains operated DC power supply:
|
||||
|
||||
converts DC from the mains into AC of the same voltage
|
||||
|
||||
converts energy from the mains into DC for operating electronic equipment
|
||||
|
||||
is a diode-capacitor device for measuring mains power
|
||||
|
||||
is a diode-choked device for measuring inductance power
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 2
|
||||
#21.2 The following unit in a DC power supply performs a rectifying operation:
|
||||
|
||||
an electrolytic capacitor
|
||||
|
||||
a fuse
|
||||
|
||||
a crowbar
|
||||
|
||||
a full-wave diode bridge
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 3
|
||||
#21.3 The following unit in a DC power supply performs a smoothing operation:
|
||||
|
||||
an electrolytic capacitor
|
||||
|
||||
a fuse
|
||||
|
||||
a crowbar
|
||||
|
||||
a full-wave diode bridge
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 4
|
||||
#21.4 The following could power a solid-state 10 watt VHF transceiver:
|
||||
|
||||
a 12 volt car battery
|
||||
|
||||
6 penlite cells in series
|
||||
|
||||
a 12 volt, 500 mA plug-pack
|
||||
|
||||
a 6 volt 10 Amp-hour Gel cell.
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 5
|
||||
#21.5 A fullwave DC power supply operates from the New Zealand AC mains. The ripple
|
||||
frequency is:
|
||||
|
||||
25 Hz
|
||||
|
||||
50 Hz
|
||||
|
||||
70 Hz
|
||||
|
||||
100 Hz
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 6
|
||||
#21.6 The capacitor value best suited for smoothing the output of a 12 volt 1 amp DC power supply is:
|
||||
|
||||
100 pF
|
||||
|
||||
10 nF
|
||||
|
||||
100 nF
|
||||
|
||||
10,000 uF
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 7
|
||||
#21.7 The following should always be included as a standard protection device in any power
|
||||
supply:
|
||||
|
||||
a saturating transformer
|
||||
|
||||
a fuse in the mains lead
|
||||
|
||||
a zener diode bridge limiter
|
||||
|
||||
a fuse in the filter capacitor negative lead
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 8
|
||||
#21.8 A halfwave DC power supply operates from the New Zealand AC mains. The ripple
|
||||
frequency will be:
|
||||
|
||||
25 Hz
|
||||
|
||||
50 Hz
|
||||
|
||||
70 Hz
|
||||
|
||||
100 Hz
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 9
|
||||
#21.9 The output voltage of a DC power supply decreases when current is drawn from it because:
|
||||
|
||||
drawing output current causes the input mains voltage to decrease
|
||||
|
||||
drawing output current causes the input mains frequency to decrease
|
||||
|
||||
all power supplies have some internal resistance
|
||||
|
||||
some power is reflected back into the mains.
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 10
|
||||
#21.10 Electrolytic capacitors are used in power supplies because:
|
||||
|
||||
they are tuned to operate at 50 Hz
|
||||
|
||||
they have very low losses compared to other types
|
||||
|
||||
they radiate less RF noise than other types
|
||||
|
||||
they can be obtained in larger values than other types
|
||||
|
||||
% ans 4
|
||||
|
149
files/N22.TXT
Normal file
149
files/N22.TXT
Normal file
@ -0,0 +1,149 @@
|
||||
% FILENAME = N22.TXT
|
||||
% Regulated Power Supplies
|
||||
% Release version 3, October 2001
|
||||
% Q 4, 10 corrected 6 Mar 2012
|
||||
|
||||
%Question: 1
|
||||
#22.1 The block marked 'Filter' in the diagram is to:
|
||||
<img src = "regps.gif" align = center width = 511 height = 129>
|
||||
<totallines = 13 >
|
||||
|
||||
filter RF radiation from the output of the power supply
|
||||
|
||||
smooth the rectified waveform from the rectifier
|
||||
|
||||
act as a 50 Hz tuned circuit
|
||||
|
||||
restore voltage variations
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 2
|
||||
#22.2 The block marked 'Regulator' in the diagram is to:
|
||||
<img src = "regps.gif" align = center width = 511 height = 129>
|
||||
<totallines = 13 >
|
||||
|
||||
regulate the incoming mains voltage to a constant value
|
||||
|
||||
ensure that the output voltage never exceeds a dangerous value
|
||||
|
||||
keep the incoming frequency constant at 50 Hz
|
||||
|
||||
keep the output voltage at a constant value
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 3
|
||||
#22.3 The block marked 'Transformer' in the diagram is to:
|
||||
<img src = "regps.gif" align = center width = 511 height = 129>
|
||||
<totallines = 13 >
|
||||
|
||||
transform the incoming mains AC voltage to a DC voltage
|
||||
|
||||
ensure that any RF radiation cannot get into the power supply
|
||||
|
||||
transform the mains AC voltage to a more convenient AC voltage
|
||||
|
||||
transform the mains AC waveform into a higher frequency waveform
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 4
|
||||
#22.4 The block marked 'Rectifier' in the diagram is to:
|
||||
<img src = "regps.gif" align = center width = 511 height = 129>
|
||||
<totallines = 13 >
|
||||
|
||||
turn the AC voltage from the transformer into a fluctuating DC voltage
|
||||
|
||||
rectify any waveform errors introduced by the transformer
|
||||
|
||||
turn the sinewave output of the rectifier into a square wave
|
||||
|
||||
smooth the DC waveform
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 5
|
||||
#22.5 The block marked 'Regulator' in the diagram could consist of:
|
||||
<img src = "regps.gif" align = center width = 511 height = 129>
|
||||
<totallines = 13 >
|
||||
|
||||
four silicon power diodes in a regulator configuration
|
||||
|
||||
two silicon power diodes and a centre-tapped transformer
|
||||
|
||||
a three-terminal regulator chip
|
||||
|
||||
a single silicon power diode connected as a half-wave rectifier
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 6
|
||||
#22.6 In the block marked regulator in the diagram below, a reversed diode may be present across the regulator. Its job is to
|
||||
<img src = "regps.gif" align = center width = 511 height = 129>
|
||||
<totallines = 15 >
|
||||
|
||||
Block negative voltages from appearing at the output
|
||||
|
||||
Blow a fuse if high voltages occur at the output
|
||||
|
||||
Blow a fuse if negative currents occur at the output
|
||||
|
||||
Bypass the regulator for higher voltage at its output compared to its input
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 7
|
||||
#22.7 A power supply is to power a solid-state transceiver. A suitable
|
||||
over-voltage protection device is a:
|
||||
|
||||
crowbar across the regulator output
|
||||
|
||||
100 uF capacitor across the transformer output
|
||||
|
||||
fuse in parallel with the regulator output
|
||||
|
||||
zener diode in series with the regulator
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 8
|
||||
#22.8 In a regulated power supply, the 'crowbar' is a:
|
||||
|
||||
means to lever up the output voltage
|
||||
|
||||
circuit for testing mains fuses
|
||||
|
||||
last-ditch protection against failure of the regulator in the supply
|
||||
|
||||
convenient means to move such a heavy supply unit
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 9
|
||||
#22.9 In a regulated power supply, 'current limiting' is sometimes used to:
|
||||
|
||||
prevent transformer core saturation
|
||||
|
||||
protect the mains fuse
|
||||
|
||||
minimise short-circuit current passing through the regulator
|
||||
|
||||
eliminate earth-leakage effects
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 10
|
||||
#22.10 The purpose of a series pass transistor in a regulated power supply is
|
||||
to:
|
||||
|
||||
suppress voltage spikes across the transformer secondary winding
|
||||
|
||||
work as a surge multiplier to speed up regulation
|
||||
|
||||
amplify output voltage errors to assist regulation
|
||||
|
||||
Allow for a higher current to be supplied than the regulator would otherwise allow
|
||||
|
||||
% ans 4
|
||||
|
134
files/N23.TXT
Normal file
134
files/N23.TXT
Normal file
@ -0,0 +1,134 @@
|
||||
% FILENAME = N23.TXT
|
||||
% General Operating Procedures
|
||||
% Release version 2, January 00
|
||||
|
||||
%QUESTION: 1
|
||||
#23.1 The correct order for callsigns in a callsign exchange at the start and end of a transmission is:
|
||||
|
||||
the other callsign followed by your own callsign
|
||||
|
||||
your callsign followed by the other callsign
|
||||
|
||||
your own callsign, repeated twice
|
||||
|
||||
the other callsign, repeated twice
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 2
|
||||
#23.2 The following phonetic code is correct for the callsign "ZL1AN":
|
||||
|
||||
zanzibar london one america norway
|
||||
|
||||
zulu lima one alpha november
|
||||
|
||||
zulu lima one able nancy
|
||||
|
||||
zulu lima one able niner
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 3
|
||||
#23.3 The accepted way to call "CQ" with a SSB transceiver is:
|
||||
|
||||
"CQ CQ CQ this is ZL1XXX ZL1XXX ZL1XXX"
|
||||
|
||||
"This is ZL1XXX calling CQ CQ CQ"
|
||||
|
||||
"CQ to anyone, CQ to anyone, I am ZL1XXX"
|
||||
|
||||
"CQ CQ CQ CQ CQ this is New Zealand"
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 4
|
||||
#23.4 A signal report of "5 and 1" indicates:
|
||||
|
||||
very low intelligibility but good signal strength
|
||||
|
||||
perfect intelligibility but very low signal strength
|
||||
|
||||
perfect intelligibility, high signal strength
|
||||
|
||||
medium intelligibilty and signal strength
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 5
|
||||
#23.5 The correct phonetic code for the callsign VK5ZX is:
|
||||
|
||||
victor kilowatt five zulu xray
|
||||
|
||||
victor kilo five zulu xray
|
||||
|
||||
victor kilo five zanzibar xray
|
||||
|
||||
victoria kilo five zulu xray
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 6
|
||||
#23.6 The accepted way to announce that you are listening to a VHF repeater is:
|
||||
|
||||
"hello 6695, this is ZL2ZZZ listening"
|
||||
|
||||
"calling 6695, 6695, 6695 from ZL2ZZZ"
|
||||
|
||||
"6695 from ZL2ZZZ"
|
||||
|
||||
"ZL2ZZZ listening on 6695"
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 7
|
||||
#23.7 A rare DX station calling CQ on CW and repeating "up 2" at the end of the call means the
|
||||
station:
|
||||
|
||||
will be listening for replies 2 kHz higher in frequency
|
||||
|
||||
will reply only to stations sending at greater than 20 wpm
|
||||
|
||||
is about to shift his calling frequency 2 kHz higher
|
||||
|
||||
will wait more than 2 seconds before replying to his call
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 8
|
||||
#23.8 When conversing via a VHF or UHF repeater you should pause between overs for about:
|
||||
|
||||
half a second
|
||||
|
||||
3 seconds
|
||||
|
||||
30 seconds
|
||||
|
||||
several minutes
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 9
|
||||
#23.9 Before calling CQ on the HF bands, you should:
|
||||
|
||||
listen first, then ask if the frequency is in use
|
||||
|
||||
request that other operators clear the frequency
|
||||
|
||||
request a signal report from any station listening
|
||||
|
||||
use a frequency where many stations are already calling
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 10
|
||||
#23.10 The phrase "you are fully quieting the repeater" means:
|
||||
|
||||
your signal is too weak for the repeater to reproduce correctly
|
||||
|
||||
your signal into the repeater is strong enough to be noise-free on the output frequency
|
||||
|
||||
your modulation level is too low
|
||||
|
||||
you are speaking too quietly into the microphone.
|
||||
|
||||
% ans 2
|
265
files/N24.TXT
Normal file
265
files/N24.TXT
Normal file
@ -0,0 +1,265 @@
|
||||
% FILENAME = N24.TXT
|
||||
% Practical Operating Knowledge
|
||||
% Release version 2, January 00
|
||||
|
||||
%QUESTION: 1
|
||||
#24.1 You are mobile and talking through a VHF repeater. The other station reports that you keep
|
||||
"dropping out". This means:
|
||||
|
||||
your signal is drifting lower in frequency
|
||||
|
||||
your signal does not have enough strength to operate the repeater
|
||||
|
||||
your voice is too low-pitched to be understood
|
||||
|
||||
you are not speaking loudly enough
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 2
|
||||
#24.2 A "pileup" is:
|
||||
|
||||
an old, worn-out radio
|
||||
|
||||
another name for a junkbox
|
||||
|
||||
a large group of stations all calling the same DX station
|
||||
|
||||
a type of selenium rectifier
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 3
|
||||
#24.3 "Break-in keying" means:
|
||||
|
||||
unauthorised entry has resulted in station equipment disappearing
|
||||
|
||||
temporary emergency operating
|
||||
|
||||
key-down changes the station to transmit, key-up to receive
|
||||
|
||||
the other station's keying is erratic
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 4
|
||||
#24.4 A repeater operating with a "positive 600 kHz split":
|
||||
|
||||
listens on a frequency 600 kHz higher than its designated frequency
|
||||
|
||||
transmits on a frequency 600 kHz higher than its designated frequency
|
||||
|
||||
transmits simultaneously on its designated frequency and one 600 kHz higher
|
||||
|
||||
uses positive modulation with a bandwidth of 600 kHz
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 5
|
||||
#24.5 The standard frequency offset (split) for 2 metre repeaters in New Zealand is:
|
||||
|
||||
plus 600 kHz above 147 MHz, minus 600 kHz on or below 147 MHz
|
||||
|
||||
plus 600 kHz below 147 MHz, minus 600 kHz on or above 147 MHz
|
||||
|
||||
minus 5 MHz below 147 MHz, plus 5 MHz kHz on or above 147 MHz
|
||||
|
||||
plus 5 MHz below 147 MHz, minus 5 MHz kHz on or above 147 MHz
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 6
|
||||
#24.6 The standard frequency offset (split) for 70 cm repeaters in New Zealand is plus or minus:
|
||||
|
||||
600 kHz
|
||||
|
||||
1 MHz
|
||||
|
||||
2 MHZ
|
||||
|
||||
5 MHz
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 7
|
||||
#24.7 You are adjusting an antenna matching unit using an SWR bridge. You should adjust for:
|
||||
|
||||
maximum reflected power
|
||||
|
||||
equal reflected and transmitted power
|
||||
|
||||
minimum reflected power
|
||||
|
||||
minimum transmitted power
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 8
|
||||
#24.8 The "squelch" or "muting" circuitry on a VHF receiver:
|
||||
|
||||
inhibits the audio output unless a station is being received
|
||||
|
||||
compresses incoming voice signals to make them more intelligible
|
||||
|
||||
reduces audio burst noise due to lightning emissions
|
||||
|
||||
reduces the noise on incoming signals
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 9
|
||||
#24.9 The "S meter" on a receiver:
|
||||
|
||||
indicates where the squelch control should be set
|
||||
|
||||
indicates the standing wave ratio
|
||||
|
||||
indicates the state of the battery voltage
|
||||
|
||||
indicates relative incoming signal strengths
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 10
|
||||
#24.10 The "National System" is:
|
||||
|
||||
the legal licensing standard of Amateur operation in New Zealand
|
||||
|
||||
a series of nationwide amateur radio linked repeaters in the 70 cm band
|
||||
|
||||
the official New Zealand repeater band plan
|
||||
|
||||
A nationwide emergency communications procedure
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 11
|
||||
#24.11 A noise blanker on a receiver is most effective to reduce:
|
||||
|
||||
50 Hz power supply hum
|
||||
|
||||
noise originating from the mixer stage of the receiver
|
||||
|
||||
ignition noise
|
||||
|
||||
noise originating from the RF stage of the receiver.
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 12
|
||||
#24.12 The purpose of a VOX unit in a transceiver is to:
|
||||
|
||||
change from receiving to transmitting using the sound of the operator's voice
|
||||
|
||||
check the transmitting frequency using the voice operated crystal
|
||||
|
||||
enable a volume operated extension speaker for remote listening
|
||||
|
||||
enable the variable oscillator crystal
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 13
|
||||
#24.13 "VOX" stands for:
|
||||
|
||||
volume operated extension speaker
|
||||
|
||||
voice operated transmit
|
||||
|
||||
variable oscillator transmitter
|
||||
|
||||
voice operated expander
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 14
|
||||
#24.14 "RIT" stands for:
|
||||
|
||||
receiver interference transmuter
|
||||
|
||||
range independent transmission
|
||||
|
||||
receiver incremental tuning
|
||||
|
||||
random interference tester
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 15
|
||||
#24.15 The "RIT" control on a transceiver:
|
||||
|
||||
reduces interference on the transmission
|
||||
|
||||
changes the frequency of the transmitter section without affecting the frequency of the receiver section
|
||||
|
||||
changes the transmitting and receiver frequencies by the same amount
|
||||
|
||||
changes the frequency of the receiver section without affecting the frequency of the transmitter section
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 16
|
||||
#24.16 The "split frequency" function on a transceiver allows the operator to:
|
||||
|
||||
transmit on one frequency and receive on another
|
||||
|
||||
monitor two frequencies simultaneously using a single loudspeaker
|
||||
|
||||
monitor two frequencies simultaneously using two loudspeakers
|
||||
|
||||
receive CW and SSB signals simultaneously on the same frequency
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 17
|
||||
#24.17 The term "ALC" stands for:
|
||||
|
||||
audio limiter control
|
||||
|
||||
automatic level control
|
||||
|
||||
automatic loudness control
|
||||
|
||||
automatic listening control
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 18
|
||||
#24.18 The AGC circuit is to:
|
||||
|
||||
expand the audio gain
|
||||
|
||||
limit the extent of amplitude generation
|
||||
|
||||
minimise the adjustments needed to the receiver gain control knobs
|
||||
|
||||
amplitude limit the crystal oscillator output
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 19
|
||||
#24.19 Many receivers have both RF and AF gain controls. These allow the operator to:
|
||||
|
||||
vary the receiver frequency and AM transmitter frequency independently
|
||||
|
||||
vary the low and high frequency audio gain independently
|
||||
|
||||
vary the receiver's "real" and "absolute" frequencies independently
|
||||
|
||||
vary the gain of the radio frequency and audio frequency amplifier stages
|
||||
independently
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 20
|
||||
#24.20 The term "PTT" means:
|
||||
|
||||
push to talk
|
||||
|
||||
piezo-electric transducer transmitter
|
||||
|
||||
phase testing terminal
|
||||
|
||||
phased transmission transponder
|
||||
|
||||
% ans 1
|
134
files/N25.TXT
Normal file
134
files/N25.TXT
Normal file
@ -0,0 +1,134 @@
|
||||
% FILENAME = N25.TXT
|
||||
% Q Signals
|
||||
% Release version 2 17 Dec 99
|
||||
|
||||
%Question: 1
|
||||
#25.1 The signal "QRM" means:
|
||||
|
||||
your signals are fading
|
||||
|
||||
I am troubled by static
|
||||
|
||||
your transmission is being interfered with
|
||||
|
||||
is my transmission being interfered with?
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 2
|
||||
#25.2 The signal "QRN" means:
|
||||
|
||||
I am busy
|
||||
|
||||
I am troubled by static
|
||||
|
||||
are you troubled by static?
|
||||
|
||||
I am being interfered with
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 3
|
||||
#25.3 The "Q signal" requesting the other station to send slower is:
|
||||
|
||||
QRL
|
||||
|
||||
QRN
|
||||
|
||||
QRM
|
||||
|
||||
QRS
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 4
|
||||
#25.4 The question "Who is calling me?" is asked by:
|
||||
|
||||
QRT?
|
||||
|
||||
QRM?
|
||||
|
||||
QRP?
|
||||
|
||||
QRZ?
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 5
|
||||
#25.5 The "Q" signal "what is your location?" is:
|
||||
|
||||
QTH?
|
||||
|
||||
QTC?
|
||||
|
||||
QRL?
|
||||
|
||||
QRZ?
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 6
|
||||
#25.6 The "Q" signal "are you busy?" is:
|
||||
|
||||
QRM?
|
||||
|
||||
QRL?
|
||||
|
||||
QRT?
|
||||
|
||||
QRZ?
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 7
|
||||
#25.7 The "Q" signal "shall I decrease transmitter power?" is:
|
||||
|
||||
QRP?
|
||||
|
||||
QRZ?
|
||||
|
||||
QRN?
|
||||
|
||||
QRL?
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 8
|
||||
#25.8 The "Q" signal "your signals are fading" is:
|
||||
|
||||
QSO
|
||||
|
||||
QSB
|
||||
|
||||
QSL
|
||||
|
||||
QRX
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 9
|
||||
#25.9 The signal "QSY?" means:
|
||||
|
||||
shall I change to transmission on another frequency?
|
||||
|
||||
shall I increase transmitter power?
|
||||
|
||||
shall I relay to .... ?
|
||||
|
||||
is my signal fading?
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 10
|
||||
#25.10 The "Q" signal which means "send faster" is:
|
||||
|
||||
QRP
|
||||
|
||||
QRQ
|
||||
|
||||
QRS
|
||||
|
||||
QRN
|
||||
|
||||
% ans 2
|
||||
|
279
files/N26.TXT
Normal file
279
files/N26.TXT
Normal file
@ -0,0 +1,279 @@
|
||||
% FILENAME = N26.TXT
|
||||
% Transmission Lines
|
||||
% Release version 2, January 2000
|
||||
|
||||
%Question: 1
|
||||
#26.1 Any length of transmission line may be made to appear as an infinitely
|
||||
long line by:
|
||||
|
||||
shorting the line at the end
|
||||
|
||||
leaving the line open at the end
|
||||
|
||||
terminating the line in its characteristic impedance
|
||||
|
||||
increasing the standing wave ratio above unity
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 2
|
||||
#26.2 The characteristic impedance of a transmission line is determined by the:
|
||||
|
||||
length of the line
|
||||
|
||||
load placed on the line
|
||||
|
||||
physical dimensions and relative positions of the conductors
|
||||
|
||||
frequency at which the line is operated
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 3
|
||||
#26.3 The characteristic impedance of a 20 metre length of transmission line is
|
||||
52 ohm. If 10 metres is cut off, the impedance will be:
|
||||
|
||||
13 ohm
|
||||
|
||||
26 ohm
|
||||
|
||||
39 ohm
|
||||
|
||||
52 ohm
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 4
|
||||
#26.4 The following feeder is the best match to the base of a quarter wave
|
||||
ground plane antenna:
|
||||
|
||||
300 ohm balanced feedline
|
||||
|
||||
50 ohm coaxial cable
|
||||
|
||||
75 ohm balanced feedline
|
||||
|
||||
300 ohm coaxial cable
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 5
|
||||
#26.5 The designed output impedance of the antenna socket of most modern
|
||||
transmitters is nominally:
|
||||
|
||||
25 ohm
|
||||
|
||||
50 ohm
|
||||
|
||||
75 ohm
|
||||
|
||||
100 ohm
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 6
|
||||
#26.6 To obtain efficient transfer of power from a transmitter to an antenna,
|
||||
it is important that there is a:
|
||||
|
||||
high load impedance
|
||||
|
||||
low load impedance
|
||||
|
||||
correct impedance match between transmitter and antenna
|
||||
|
||||
high standing wave ratio
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 7
|
||||
#26.7 A coaxial feedline is constructed from:
|
||||
|
||||
a single conductor
|
||||
|
||||
two parallel conductors separated by spacers
|
||||
|
||||
braid and insulation around a central conductor
|
||||
|
||||
braid and insulation twisted together
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 8
|
||||
#26.8 An RF transmission line should be matched at the transmitter end to:
|
||||
|
||||
prevent frequency drift
|
||||
|
||||
overcome fading of the transmitted signal
|
||||
|
||||
ensure that the radiated signal has the intended polarisation
|
||||
|
||||
transfer maximum power to the antenna
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 9
|
||||
#26.9 A damaged antenna or feedline attached to the output of a transmitter
|
||||
will present an incorrect load resulting in:
|
||||
|
||||
the driver stage not delivering power to the final
|
||||
|
||||
the output tuned circuit breaking down
|
||||
|
||||
excessive heat being produced in the transmitter output stage
|
||||
|
||||
loss of modulation in the transmitted signal
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 10
|
||||
#26.10 A result of mismatch between the power amplifier of a transmitter and
|
||||
the antenna is:
|
||||
|
||||
reduced antenna radiation
|
||||
|
||||
radiation of key clicks
|
||||
|
||||
lower modulation percentage
|
||||
|
||||
smaller DC current drain
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 11
|
||||
#26.11 Losses occurring on a transmission line between a transmitter and
|
||||
antenna result in:
|
||||
|
||||
less RF power being radiated
|
||||
|
||||
a SWR of 1:1
|
||||
|
||||
reflections occurring in the line
|
||||
|
||||
improved transfer of RF energy to the antenna
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 12
|
||||
#26.12 If the characteristic impedance of a feedline does not match the antenna
|
||||
input impedance then:
|
||||
|
||||
standing waves are produced in the feedline
|
||||
|
||||
heat is produced at the junction
|
||||
|
||||
the SWR drops to 1:1
|
||||
|
||||
the antenna will not radiate any signal
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 13
|
||||
#26.13 A result of standing waves on a non-resonant transmission line is:
|
||||
|
||||
maximum transfer of energy to the antenna from the transmitter
|
||||
|
||||
perfect impedance match between transmitter and feedline
|
||||
|
||||
reduced transfer of RF energy to the antenna
|
||||
|
||||
lack of radiation from the transmission line
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 14
|
||||
#26.14 A quarter-wave length of 50-ohm coaxial line is shorted at one end. The
|
||||
impedance seen at the other end of the line is:
|
||||
|
||||
zero
|
||||
|
||||
5 ohm
|
||||
|
||||
150 ohm
|
||||
|
||||
infinite
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 15
|
||||
#26.15 A switching system to use a single antenna for a separate transmitter
|
||||
and receiver should also:
|
||||
|
||||
disable the unit not being used
|
||||
|
||||
disconnect the antenna tuner
|
||||
|
||||
ground the antenna on receive
|
||||
|
||||
switch between power supplies
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 16
|
||||
#26.16 An instrument to check whether RF power in the transmission line is
|
||||
transferred to the antenna is:
|
||||
|
||||
a standing wave ratio meter
|
||||
|
||||
an antenna tuner
|
||||
|
||||
a dummy load
|
||||
|
||||
a keying monitor
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 17
|
||||
#26.17 This type of transmission line will exhibit the lowest loss:
|
||||
|
||||
twisted flex
|
||||
|
||||
coaxial cable
|
||||
|
||||
open-wire feeder
|
||||
|
||||
mains cable
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 18
|
||||
#26.18 The velocity factor of a coaxial cable with solid polythene dielectric
|
||||
is about:
|
||||
|
||||
0.66
|
||||
|
||||
0.1
|
||||
|
||||
0.8
|
||||
|
||||
1.0
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 19
|
||||
#26.19 This commonly available antenna feedline can be buried directly in the
|
||||
ground for some distance without adverse effects:
|
||||
|
||||
75 ohm twinlead
|
||||
|
||||
300 ohm twinlead
|
||||
|
||||
600 ohm open-wire
|
||||
|
||||
coaxial cable
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 20
|
||||
#26.20 If an antenna feedline must pass near grounded metal objects, the
|
||||
following type should be used:
|
||||
|
||||
75 ohm twinlead
|
||||
|
||||
300 ohm twinlead
|
||||
|
||||
600 ohm open-wire
|
||||
|
||||
coaxial cable
|
||||
|
||||
% ans 4
|
||||
|
553
files/N27.TXT
Normal file
553
files/N27.TXT
Normal file
@ -0,0 +1,553 @@
|
||||
% FILENAME = N27.TXT
|
||||
% Antennas
|
||||
% Release version 3, October 2001
|
||||
|
||||
%Question: 1
|
||||
#27.1 <img src = "yagi.gif" align = right width = 291 height = 123>
|
||||
<extralines = 4 totallines = 10 >
|
||||
In this diagram the item U corresponds to the:
|
||||
|
||||
boom
|
||||
|
||||
reflector
|
||||
|
||||
driven element
|
||||
|
||||
director
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 2
|
||||
#27.2 <img src = "yagi.gif" align = right width = 291 height = 123>
|
||||
<extralines = 4 totallines = 10 >
|
||||
In this diagram the item V corresponds to the:
|
||||
|
||||
boom
|
||||
|
||||
reflector
|
||||
|
||||
driven element
|
||||
|
||||
director
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 3
|
||||
#27.3 <img src = "yagi.gif" align = right width = 291 height = 123>
|
||||
<extralines = 4 totallines = 10 >
|
||||
In this diagram the item X corresponds to the:
|
||||
|
||||
boom
|
||||
|
||||
reflector
|
||||
|
||||
director
|
||||
|
||||
driven element
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 4
|
||||
#27.4 <img src = "dipole.gif" align = right width = 400 height = 90>
|
||||
<totallines = 10 >
|
||||
The antenna in this diagram has two equal lengths of wire shown as 'X' forming
|
||||
a dipole between insulators. The optimum operating frequency will be when the:
|
||||
|
||||
length X+X equals the signal wavelength
|
||||
|
||||
dimensions are changed with one leg doubled in length
|
||||
|
||||
length X+X is a little shorter than one-half of the signal wavelength
|
||||
|
||||
antenna has one end grounded
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 5
|
||||
#27.5 <img src = "dipole.gif" align = right width = 400 height = 90>
|
||||
<totallines = 7 >
|
||||
The antenna in this diagram can be made to operate on several bands if the
|
||||
following item is installed at the points shown at 'X' in each wire:
|
||||
|
||||
a capacitor
|
||||
|
||||
an inductor
|
||||
|
||||
a fuse
|
||||
|
||||
a parallel-tuned trap
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 6
|
||||
#27.6 <img src = "dipole.gif" align = right width = 400 height = 90>
|
||||
<totallines = 9 >
|
||||
The physical length of the antenna shown in this diagram can be shortened and
|
||||
the electrical length maintained, if one of the following items is added at the
|
||||
points shown at 'X' in each wire:
|
||||
|
||||
an inductor
|
||||
|
||||
a capacitor
|
||||
|
||||
an insulator
|
||||
|
||||
a resistor
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 7
|
||||
#27.7 The approximate physical length of a half-wave antenna for a frequency of
|
||||
1000 kHz is:
|
||||
|
||||
300 metres
|
||||
|
||||
600 metres
|
||||
|
||||
150 metres
|
||||
|
||||
30 metres
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 8
|
||||
#27.8 The wavelength for a frequency of 25 MHz is:
|
||||
|
||||
15 metres
|
||||
|
||||
32 metres
|
||||
|
||||
4 metres
|
||||
|
||||
12 metres
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 9
|
||||
#27.9 Magnetic and electric fields about an antenna are:
|
||||
|
||||
parallel to each other
|
||||
|
||||
determined by the type of antenna used
|
||||
|
||||
perpendicular to each other
|
||||
|
||||
variable with the time of day
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 10
|
||||
#27.10 Radio wave polarisation is defined by the orientation of the radiated:
|
||||
|
||||
magnetic field
|
||||
|
||||
electric field
|
||||
|
||||
inductive field
|
||||
|
||||
capacitive field
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 11
|
||||
#27.11 A half wave dipole antenna is normally fed at the point of:
|
||||
|
||||
maximum voltage
|
||||
|
||||
maximum current
|
||||
|
||||
maximum resistance
|
||||
|
||||
resonance
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 12
|
||||
#27.12 An important factor to consider when high angle radiation is desired
|
||||
from a horizontal half-wave antenna is the:
|
||||
|
||||
size of the antenna wire
|
||||
|
||||
time of the year
|
||||
|
||||
height of the antenna
|
||||
|
||||
mode of propagation
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 13
|
||||
#27.13 An antenna which transmits equally well in all compass directions is a:
|
||||
|
||||
dipole with a reflector only
|
||||
|
||||
quarterwave grounded vertical
|
||||
|
||||
dipole with director only
|
||||
|
||||
half-wave horizontal dipole
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 14
|
||||
#27.14 A groundplane antenna emits a:
|
||||
|
||||
horizontally polarised wave
|
||||
|
||||
elliptically polarised wave
|
||||
|
||||
axially polarised wave
|
||||
|
||||
vertically polarised wave
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 15
|
||||
#27.15 The impedance at the feed point of a folded dipole antenna is
|
||||
approximately:
|
||||
|
||||
300 ohm
|
||||
|
||||
150 ohm
|
||||
|
||||
200 ohm
|
||||
|
||||
100 ohm
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 16
|
||||
#27.16 The centre impedance of a 'half-wave' dipole in 'free space' is
|
||||
approximately:
|
||||
|
||||
52 ohm
|
||||
|
||||
73 ohm
|
||||
|
||||
100 ohm
|
||||
|
||||
150 ohm
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 17
|
||||
#27.17 The effect of adding a series inductance to an antenna is to:
|
||||
|
||||
increase the resonant frequency
|
||||
|
||||
have no change on the resonant frequency
|
||||
|
||||
have little effect
|
||||
|
||||
decrease the resonant frequency
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 18
|
||||
#27.18 The purpose of a balun in a transmitting antenna system is to:
|
||||
|
||||
balance harmonic radiation
|
||||
|
||||
reduce unbalanced standing waves
|
||||
|
||||
protect the antenna system from lightning strikes
|
||||
|
||||
match unbalanced and balanced transmission lines
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 19
|
||||
#27.19 A dummy antenna:
|
||||
|
||||
attenuates a signal generator to a desirable level
|
||||
|
||||
provides more selectivity when a transmitter is being tuned
|
||||
|
||||
matches an AF generator to the receiver
|
||||
|
||||
duplicates the characteristics of an antenna without radiating signals
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 20
|
||||
#27.20 A half-wave antenna resonant at 7100 kHz is approximately this long:
|
||||
|
||||
20 metres
|
||||
|
||||
40 metres
|
||||
|
||||
80 metres
|
||||
|
||||
160 metres
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 21
|
||||
#27.21 An antenna with 20 metres of wire each side of a centre insulator will
|
||||
be resonant at approximately:
|
||||
|
||||
3600 kHz
|
||||
|
||||
3900 kHz
|
||||
|
||||
7050 kHz
|
||||
|
||||
7200 kHz
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 22
|
||||
#27.22 A half wave antenna cut for 7 MHz can be used on this band without
|
||||
change:
|
||||
|
||||
10 metre
|
||||
|
||||
15 metre
|
||||
|
||||
20 metre
|
||||
|
||||
80 metre
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 23
|
||||
#27.23 This property of an antenna broadly defines the range of frequencies to
|
||||
which it will be effective:
|
||||
|
||||
bandwidth
|
||||
|
||||
front-to-back ratio
|
||||
|
||||
impedance
|
||||
|
||||
polarisation
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 24
|
||||
#27.24 The resonant frequency of an antenna may be increased by:
|
||||
|
||||
shortening the radiating element
|
||||
|
||||
lengthening the radiating element
|
||||
|
||||
increasing the height of the radiating element
|
||||
|
||||
lowering the radiating element
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 25
|
||||
#27.25 Insulators are used at the end of suspended antenna wires to:
|
||||
|
||||
increase the effective antenna length
|
||||
|
||||
limit the electrical length of the antenna
|
||||
|
||||
make the antenna look more attractive
|
||||
|
||||
prevent any loss of radio waves by the antenna
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 26
|
||||
#27.26 To lower the resonant frequency of an antenna, the operator should:
|
||||
|
||||
lengthen the antenna
|
||||
|
||||
centre feed the antenna with TV ribbon
|
||||
|
||||
shorten the antenna
|
||||
|
||||
ground one end
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 27
|
||||
#27.27 A half-wave antenna is often called a:
|
||||
|
||||
bi-polar
|
||||
|
||||
Yagi
|
||||
|
||||
dipole
|
||||
|
||||
beam
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 28
|
||||
#27.28 The resonant frequency of a dipole antenna is mainly determined by:
|
||||
|
||||
its height above the ground
|
||||
|
||||
its length
|
||||
|
||||
the output power of the transmitter used
|
||||
|
||||
the length of the transmission line
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 29
|
||||
#27.29 A transmitting antenna for 28 MHz for mounting on the roof of a car
|
||||
could be a:
|
||||
|
||||
vertical long wire
|
||||
|
||||
quarter wave vertical
|
||||
|
||||
horizontal dipole
|
||||
|
||||
full wave centre fed horizontal
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 30
|
||||
#27.30 A vertical antenna which uses a flat conductive surface at its base is
|
||||
the:
|
||||
|
||||
vertical dipole
|
||||
|
||||
quarter wave ground plane
|
||||
|
||||
rhombic
|
||||
|
||||
long wire
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 31
|
||||
#27.31 The main characteristic of a vertical antenna is that it:
|
||||
|
||||
requires few insulators
|
||||
|
||||
is very sensitive to signals coming from horizontal aerials
|
||||
|
||||
receives signals from all points around it equally well
|
||||
|
||||
is easy to feed with TV ribbon feeder
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 32
|
||||
#27.32 At the ends of a half-wave dipole the:
|
||||
|
||||
voltage and current are both high
|
||||
|
||||
voltage is high and current is low
|
||||
|
||||
voltage and current are both low
|
||||
|
||||
voltage low and current is high
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 33
|
||||
#27.33 An antenna type commonly used on HF is the:
|
||||
|
||||
parabolic dish
|
||||
|
||||
cubical quad
|
||||
|
||||
13-element Yagi
|
||||
|
||||
helical Yagi
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 34
|
||||
#27.34 A Yagi antenna is said to have a power gain over a dipole antenna for
|
||||
the same frequency band because:
|
||||
|
||||
it radiates more power than a dipole
|
||||
|
||||
more powerful transmitters can use it
|
||||
|
||||
it concentrates the radiation in one direction
|
||||
|
||||
it can be used for more than one band
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 35
|
||||
#27.35 The maximum radiation from a three element Yagi antenna is:
|
||||
|
||||
in the direction of the reflector end of the boom
|
||||
|
||||
in the direction of the director end of the boom
|
||||
|
||||
at right angles to the boom
|
||||
|
||||
parallel to the line of the coaxial feeder
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 36
|
||||
#27.36 The reflector and director(s) in a Yagi antenna are called:
|
||||
|
||||
oscillators
|
||||
|
||||
tuning stubs
|
||||
|
||||
parasitic elements
|
||||
|
||||
matching units
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 37
|
||||
#27.37 An isotropic antenna is a:
|
||||
|
||||
half wave reference dipole
|
||||
|
||||
infinitely long piece of wire
|
||||
|
||||
dummy load
|
||||
|
||||
hypothetical point source
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 38
|
||||
#27.38 The main reason why many VHF base and mobile antennas in amateur use are
|
||||
5/8 of a wavelength long is that:
|
||||
|
||||
it is easy to match the antenna to the transmitter
|
||||
|
||||
it is a convenient length on VHF
|
||||
|
||||
the angle of radiation is high giving excellent local coverage
|
||||
|
||||
most of the energy is radiated at a low angle
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 39
|
||||
#27.39 A more important consideration when selecting an antenna for working
|
||||
stations at great distances is:
|
||||
|
||||
sunspot activity
|
||||
|
||||
angle of radiation
|
||||
|
||||
impedance
|
||||
|
||||
bandwidth
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 40
|
||||
#27.40 On VHF and UHF bands, polarisation of the receiving antenna is important
|
||||
in relation to the transmitting antenna, but on HF it is relatively unimportant
|
||||
because:
|
||||
|
||||
the ionosphere can change the polarisation of the signal from moment to moment
|
||||
|
||||
the ground wave and the sky wave continually shift the polarisation
|
||||
|
||||
anomalies in the earth's magnetic field profoundly affect HF polarisation
|
||||
|
||||
improved selectivity in HF receivers makes changes in polarisation redundant
|
||||
|
||||
% ans 1
|
692
files/N28.TXT
Normal file
692
files/N28.TXT
Normal file
@ -0,0 +1,692 @@
|
||||
% FILENAME = N28.TXT
|
||||
% Propagation
|
||||
% Release version 3, October 2001
|
||||
|
||||
%QUESTION 1
|
||||
#28.1 A 'skip zone' is:
|
||||
|
||||
the distance between the antenna and where the refracted wave first
|
||||
returns to earth
|
||||
|
||||
the distance between the far end of the ground wave and where the
|
||||
refracted wave first returns to earth
|
||||
|
||||
the distance between any two refracted waves
|
||||
|
||||
a zone caused by lost sky waves
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION 2
|
||||
#28.2 The medium which reflects high frequency radio waves back to the earth's
|
||||
surface is called the:
|
||||
|
||||
biosphere
|
||||
|
||||
stratosphere
|
||||
|
||||
ionosphere
|
||||
|
||||
troposphere
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION 3
|
||||
#28.3 The highest frequency that will be reflected back to the earth at any given time
|
||||
is known as the:
|
||||
|
||||
UHF
|
||||
|
||||
MUF
|
||||
|
||||
OWF
|
||||
|
||||
LUF
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION 4
|
||||
#28.4 All communications frequencies throughout the spectrum are affected in
|
||||
varying degrees by the:
|
||||
|
||||
atmospheric conditions
|
||||
|
||||
ionosphere
|
||||
|
||||
aurora borealis
|
||||
|
||||
sun
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION 5
|
||||
#28.5 Solar cycles have an average length of:
|
||||
|
||||
1 year
|
||||
|
||||
3 years
|
||||
|
||||
6 years
|
||||
|
||||
11 years
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION 6
|
||||
#28.6 The 'skywave' is another name for the:
|
||||
|
||||
ionospheric wave
|
||||
|
||||
tropospheric wave
|
||||
|
||||
ground wave
|
||||
|
||||
inverted wave
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION 7
|
||||
#28.7 The polarisation of an electromagnetic wave is defined by the direction of:
|
||||
|
||||
the H field
|
||||
|
||||
propagation
|
||||
|
||||
the E field
|
||||
|
||||
the receiving antenna
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION 8
|
||||
#28.8 That portion of HF radiation which is directly affected by the surface of the
|
||||
earth is called:
|
||||
|
||||
ionospheric wave
|
||||
|
||||
local field wave
|
||||
|
||||
ground wave
|
||||
|
||||
inverted wave
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION 9
|
||||
#28.9 Radio wave energy on frequencies below 4 MHz during daylight hours is
|
||||
almost completely absorbed by this ionospheric layer:
|
||||
|
||||
C
|
||||
|
||||
D
|
||||
|
||||
E
|
||||
|
||||
F
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION 10
|
||||
#28.10 Because of high absorption levels at frequencies below 4 MHz during daylight
|
||||
hours, only high angle signals are normally reflected back by this layer:
|
||||
|
||||
C
|
||||
|
||||
D
|
||||
|
||||
E
|
||||
|
||||
F
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION 11
|
||||
#28.11 Scattered patches of high ionisation developed seasonally at the height of one
|
||||
of the layers is called:
|
||||
|
||||
sporadic-E
|
||||
|
||||
patchy
|
||||
|
||||
random reflectors
|
||||
|
||||
trans-equatorial ionisation
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION 12
|
||||
#28.12 For long distance propagation, the radiation angle of energy from the antenna
|
||||
should be:
|
||||
|
||||
less than 30 degrees
|
||||
|
||||
more than 30 degrees but less than forty-five
|
||||
|
||||
more than 45 degrees but less than ninety
|
||||
|
||||
90 degrees
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION 13
|
||||
#28.13 The path radio waves normally follow from a transmitting antenna to a
|
||||
receiving antenna at VHF and higher frequencies is a:
|
||||
|
||||
circular path going north or south from the transmitter
|
||||
|
||||
great circle path
|
||||
|
||||
straight line
|
||||
|
||||
bent path via the ionosphere
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION 14
|
||||
#28.14 A radio wave may follow two or more different paths during propagation and
|
||||
produce slowly-changing phase differences between signals at the receiver
|
||||
resulting in a phenomenon called:
|
||||
|
||||
absorption
|
||||
|
||||
baffling
|
||||
|
||||
fading
|
||||
|
||||
skip
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION 15
|
||||
#28.15 The distance from the far end of the ground wave to the nearest point where the sky wave
|
||||
returns to the earth is called the:
|
||||
|
||||
skip distance
|
||||
|
||||
radiation distance
|
||||
|
||||
skip angle
|
||||
|
||||
skip zone
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION 16
|
||||
#28.16 High Frequency long-distance propagation is most dependent on:
|
||||
|
||||
ionospheric reflection
|
||||
|
||||
tropospheric reflection
|
||||
|
||||
ground reflection
|
||||
|
||||
inverted reflection
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION 17
|
||||
#28.17 The layer of the ionosphere mainly responsible for long distance
|
||||
communication is:
|
||||
|
||||
C
|
||||
|
||||
D
|
||||
|
||||
E
|
||||
|
||||
F
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION 18
|
||||
#28.18 The ionisation level of the ionosphere reaches its minimum:
|
||||
|
||||
just after sunset
|
||||
|
||||
just before sunrise
|
||||
|
||||
at noon
|
||||
|
||||
at midnight
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION 19
|
||||
#28.19 One of the ionospheric layers splits into two parts during the day called:
|
||||
|
||||
A & B
|
||||
|
||||
D1 & D2
|
||||
|
||||
E1 & E2
|
||||
|
||||
F1 & F2
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION 20
|
||||
#28.20 Signal fadeouts resulting from an 'ionospheric storm' or 'sudden ionospheric
|
||||
disturbance' are usually attributed to:
|
||||
|
||||
heating of the ionised layers
|
||||
|
||||
over-use of the signal path
|
||||
|
||||
insufficient transmitted power
|
||||
|
||||
solar flare activity
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION 21
|
||||
#28.21 The 80 metre band is useful for working:
|
||||
|
||||
in the summer at midday during high sunspot activity
|
||||
|
||||
long distance during daylight hours when absorption is not significant
|
||||
|
||||
all points on the earth's surface
|
||||
|
||||
up to several thousand kilometres in darkness but atmospheric and
|
||||
man-made noises tend to be high
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION 22
|
||||
#28.22 The skip distance of radio signals is determined by the:
|
||||
|
||||
type of transmitting antenna used
|
||||
|
||||
power fed to the final amplifier of the transmitter
|
||||
|
||||
only the angle of radiation from the antenna
|
||||
|
||||
both the height of the ionosphere and the angle of radiation from the
|
||||
antenna
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION 23
|
||||
#28.23 Three recognised layers of the ionosphere that affect radio propagation are:
|
||||
|
||||
A, E, F
|
||||
|
||||
B, D, E
|
||||
|
||||
C, E, F
|
||||
|
||||
D, E, F
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION 24
|
||||
#28.24 Propagation on 80 metres during the summer daylight hours is limited to
|
||||
relatively short distances because of
|
||||
|
||||
high absorption in the D layer
|
||||
|
||||
the disappearance of the E layer
|
||||
|
||||
poor refraction by the F layer
|
||||
|
||||
pollution in the T layer
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION 25
|
||||
#28.25 The distance from the transmitter to the nearest point where the sky wave
|
||||
returns to the earth is called the:
|
||||
|
||||
angle of radiation
|
||||
|
||||
maximum usable frequency
|
||||
|
||||
skip distance
|
||||
|
||||
skip zone
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION 26
|
||||
#28.26 A variation in received signal strength caused by slowly changing differences
|
||||
in path lengths is called:
|
||||
|
||||
absorption
|
||||
|
||||
fading
|
||||
|
||||
fluctuation
|
||||
|
||||
path loss
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION 27
|
||||
#28.27 VHF and UHF bands are frequently used for satellite communication because:
|
||||
|
||||
waves at these frequencies travel to and from the satellite relatively
|
||||
unaffected by the ionosphere
|
||||
|
||||
the Doppler frequency change caused by satellite motion is much less
|
||||
than at HF
|
||||
|
||||
satellites move too fast for HF waves to follow
|
||||
|
||||
the Doppler effect would cause HF waves to be shifted into the VHF
|
||||
and UHF bands.
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION 28
|
||||
#28.28 The 'critical frequency' is defined as the:
|
||||
|
||||
highest frequency to which your transmitter can be tuned
|
||||
|
||||
lowest frequency which is reflected back to earth at vertical incidence
|
||||
|
||||
minimum usable frequency
|
||||
|
||||
highest frequency which will be reflected back to earth at vertical
|
||||
incidence
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION 29
|
||||
#28.29 The speed of a radio wave:
|
||||
|
||||
varies indirectly to the frequency
|
||||
|
||||
is the same as the speed of light
|
||||
|
||||
is infinite in space
|
||||
|
||||
is always less than half the speed of light
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION 30
|
||||
#28.30 The MUF for a given radio path is the:
|
||||
|
||||
mean of the maximum and minimum usable frequencies
|
||||
|
||||
maximum usable frequency
|
||||
|
||||
minimum usable frequency
|
||||
|
||||
mandatory usable frequency
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION 31
|
||||
#28.31 The position of the E layer in the ionosphere is:
|
||||
|
||||
above the F layer
|
||||
|
||||
below the F layer
|
||||
|
||||
below the D layer
|
||||
|
||||
sporadic
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION 32
|
||||
#28.32 A distant amplitude-modulated station is heard quite loudly but the modulation
|
||||
is at times severely distorted. A similar local station is not affected. The
|
||||
probable cause of this is:
|
||||
|
||||
transmitter malfunction
|
||||
|
||||
selective fading
|
||||
|
||||
a sudden ionospheric disturbance
|
||||
|
||||
front end overload
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION 33
|
||||
#28.33 Skip distance is a term associated with signals through the ionosphere. Skip
|
||||
effects are due to:
|
||||
|
||||
reflection and refraction from the ionosphere
|
||||
|
||||
selective fading of local signals
|
||||
|
||||
high gain antennas being used
|
||||
|
||||
local cloud cover
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION 34
|
||||
#28.34 The type of atmospheric layers which will best return signals to earth are:
|
||||
|
||||
oxidised layers
|
||||
|
||||
heavy cloud layers
|
||||
|
||||
ionised layers
|
||||
|
||||
sun spot layers
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION 35
|
||||
#28.35 The ionosphere:
|
||||
|
||||
is a magnetised belt around the earth
|
||||
|
||||
consists of magnetised particles around the earth
|
||||
|
||||
is formed from layers of ionised gases around the earth
|
||||
|
||||
is a spherical belt of solar radiation around the earth
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION 36
|
||||
#28.36 The skip distance of a sky wave will be greatest when the:
|
||||
|
||||
ionosphere is most densely ionised
|
||||
|
||||
signal given out is strongest
|
||||
|
||||
angle of radiation is smallest
|
||||
|
||||
polarisation is vertical
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION 37
|
||||
#28.37 If the height of the reflecting layer of the ionosphere increases, the skip
|
||||
distance of a high frequency transmission:
|
||||
|
||||
stays the same
|
||||
|
||||
decreases
|
||||
|
||||
varies regularly
|
||||
|
||||
becomes greater
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION 38
|
||||
#28.38 If the frequency of a transmitted signal is so high that we no longer receive a
|
||||
reflection from the ionosphere, the signal frequency is above the:
|
||||
|
||||
speed of light
|
||||
|
||||
sun spot frequency
|
||||
|
||||
skip distance
|
||||
|
||||
maximum usable frequency
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION 39
|
||||
#28.39 A 'line of sight' transmission between two stations uses mainly the:
|
||||
|
||||
ionosphere
|
||||
|
||||
troposphere
|
||||
|
||||
sky wave
|
||||
|
||||
ground wave
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION 40
|
||||
#28.40 The distance travelled by ground waves in air:
|
||||
|
||||
is the same for all frequencies
|
||||
|
||||
is less at higher frequencies
|
||||
|
||||
is more at higher frequencies
|
||||
|
||||
depends on the maximum usable frequency
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION 41
|
||||
#28.41 The radio wave from the transmitter to the ionosphere and back to earth is
|
||||
correctly known as the:
|
||||
|
||||
sky wave
|
||||
|
||||
skip wave
|
||||
|
||||
surface wave
|
||||
|
||||
F layer
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION 42
|
||||
#28.42 Reception of high frequency radio waves beyond 4000 km normally occurs by
|
||||
the:
|
||||
|
||||
ground wave
|
||||
|
||||
skip wave
|
||||
|
||||
surface wave
|
||||
|
||||
sky wave
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION 43
|
||||
#28.43 A 28 MHz radio signal is more likely to be heard over great distances:
|
||||
|
||||
if the transmitter power is reduced
|
||||
|
||||
during daylight hours
|
||||
|
||||
only during the night
|
||||
|
||||
at full moon
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION 44
|
||||
#28.44 The number of high frequency bands open to long distance communication at
|
||||
any time depends on:
|
||||
|
||||
the highest frequency at which ionospheric reflection can occur
|
||||
|
||||
the number of frequencies the receiver can tune
|
||||
|
||||
the power being radiated by the transmitting station
|
||||
|
||||
the height of the transmitting antenna
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION 45
|
||||
#28.45 Regular changes in the ionosphere occur approximately every 11:
|
||||
|
||||
days
|
||||
|
||||
months
|
||||
|
||||
years
|
||||
|
||||
centuries
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION 46
|
||||
#28.46 When a HF transmitted radio signal reaches a receiver, small changes in the
|
||||
ionosphere can cause:
|
||||
|
||||
consistently stronger signals
|
||||
|
||||
a change in the ground wave signal
|
||||
|
||||
variations in signal strength
|
||||
|
||||
consistently weaker signals
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION 47
|
||||
#28.47 The usual effect of ionospheric storms is to:
|
||||
|
||||
increase the maximum usable frequency
|
||||
|
||||
cause a fade-out of sky-wave signals
|
||||
|
||||
produce extreme weather changes
|
||||
|
||||
prevent communications by ground wave
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION 48
|
||||
#28.48 Changes in received signal strength when sky wave propagation is used are
|
||||
called:
|
||||
|
||||
ground wave losses
|
||||
|
||||
modulation losses
|
||||
|
||||
fading
|
||||
|
||||
sunspots
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION 49
|
||||
#28.49 Although high frequency signals may be received from a distant station by a
|
||||
sky wave at a certain time, it may not be possible to hear them an hour later.
|
||||
This may be due to:
|
||||
|
||||
changes in the ionosphere
|
||||
|
||||
shading of the earth by clouds
|
||||
|
||||
changes in atmospheric temperature
|
||||
|
||||
absorption of the ground wave signal
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION 50
|
||||
#28.50 VHF or UHF signals transmitted towards a tall building are often received at a
|
||||
more distant point in another direction because:
|
||||
|
||||
these waves are easily bent by the ionosphere
|
||||
|
||||
these waves are easily reflected by objects in their path
|
||||
|
||||
you can never tell in which direction a wave is travelling
|
||||
|
||||
tall buildings have elevators
|
||||
|
||||
% ans 2
|
||||
|
398
files/N29.TXT
Normal file
398
files/N29.TXT
Normal file
@ -0,0 +1,398 @@
|
||||
|
||||
|
||||
% FILENAME = N29.TXT
|
||||
% Interference and Filtering
|
||||
% Release version 4, June 2004
|
||||
|
||||
%QUESTION: 1
|
||||
#29.1 Electromagnetic compatibility is:
|
||||
|
||||
two antennas facing each other
|
||||
|
||||
the ability of equipment to function satisfactorily in its own environment without introducing intolerable electromagnetic disturbances
|
||||
|
||||
more than one relay solenoid operating simultaneously
|
||||
|
||||
the inability of equipment to function satisfactorily together and produce tolerable electromagnetic disturbances
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 2
|
||||
#29.2 On an amateur receiver, unwanted signals are found at every 15.625 kHz. This is probably due to:
|
||||
|
||||
a low-frequency government station
|
||||
|
||||
a remote radar station
|
||||
|
||||
radiation from a nearby TV line oscillator
|
||||
|
||||
none of these
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 3
|
||||
#29.3 Narrow-band interference can be caused by:
|
||||
|
||||
transmitter harmonics
|
||||
|
||||
a neon sign
|
||||
|
||||
a shaver motor
|
||||
|
||||
lightning flashes
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 4
|
||||
#29.4 Which of the following is most likely to cause broad-band continuous interference:
|
||||
|
||||
an electric blanket switch
|
||||
|
||||
a refrigerator thermostat
|
||||
|
||||
a microwave transmitter
|
||||
|
||||
poor commutation in an electric motor
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 5
|
||||
#29.5 If broadband noise interference varies when it rains, the most likely cause could be from:
|
||||
|
||||
underground power cables
|
||||
|
||||
outside overhead power lines
|
||||
|
||||
car ignitions
|
||||
|
||||
your antenna connection
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 6
|
||||
#29.6 Before explaining to a neighbour that the reported interference is due to a lack of immunity in the neighbour's electronic equipment:
|
||||
|
||||
disconnect all your equipment from their power sources
|
||||
|
||||
write a letter to the MED
|
||||
|
||||
make sure that there is no interference on your own domestic equipment
|
||||
|
||||
ignore all complaints and take no action
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 7
|
||||
#29.7 A neighbour's stereo system is suffering RF break-through. One possible cure is to:
|
||||
|
||||
put a ferrite bead on the transmitter output lead
|
||||
|
||||
put a capacitor across the transmitter output
|
||||
|
||||
use open-wire feeders to the antenna
|
||||
|
||||
use screened wire for the loudspeaker leads
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 8
|
||||
#29.8 When living in a densely-populated area, it is wise to:
|
||||
|
||||
always use maximum transmitter output power
|
||||
|
||||
use the minimum transmitter output power necessary
|
||||
|
||||
only transmit during popular television programme times
|
||||
|
||||
point the beam at the maximum number of television antennas
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 9
|
||||
#29.9 When someone in the neighbourhood complains of TVI it is wise to:
|
||||
|
||||
deny all responsibility
|
||||
|
||||
immediately blame the other equipment
|
||||
|
||||
inform all the other neighbours
|
||||
|
||||
check your log to see if it coincides with your transmissions
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 10
|
||||
#29.10 Cross-modulation is usually caused by:
|
||||
|
||||
rectification of strong signals in overloaded stages
|
||||
|
||||
key-clicks generated at the transmitter
|
||||
|
||||
improper filtering in the transmitter
|
||||
|
||||
lack of receiver sensitivity and selectivity
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 11
|
||||
#29.11 When the signal from a transmitter overloads the audio stages of a broadcast receiver, the transmitted signal:
|
||||
|
||||
can be heard irrespective of where the receiver is tuned
|
||||
|
||||
appears only when a broadcast station is received
|
||||
|
||||
is distorted on voice peaks
|
||||
|
||||
appears on only one frequency
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 12
|
||||
#29.12 Cross-modulation of a broadcast receiver by a nearby transmitter would be noticed in the receiver as:
|
||||
|
||||
a lack of signals being received
|
||||
|
||||
the undesired signal in the background of the desired signal
|
||||
|
||||
interference only when a broadcast signal is received
|
||||
|
||||
distortion on transmitted voice peaks
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 13
|
||||
#29.13 Unwanted signals from a radio transmitter which cause harmful interference to other users are known as:
|
||||
|
||||
rectified signals
|
||||
|
||||
re-radiation signals
|
||||
|
||||
reflected signals
|
||||
|
||||
harmonic and other spurious signals
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 14
|
||||
#29.14 To reduce harmonic output from a transmitter, the following could be put in the transmission line as close to the
|
||||
transmitter as possible:
|
||||
|
||||
wave trap
|
||||
|
||||
low-pass filter
|
||||
|
||||
high-pass filter
|
||||
|
||||
band reject filter
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 15
|
||||
#29.15 To reduce energy from an HF transmitter getting into a television receiver, the following could be placed in the TV antenna lead as close to the TV as possible:
|
||||
|
||||
active filter
|
||||
|
||||
low-pass filter
|
||||
|
||||
high-pass filter
|
||||
|
||||
band reject filter
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 16
|
||||
#29.16 A low-pass filter used to eliminate the radiation of unwanted signals is connected to the:
|
||||
|
||||
output of the balanced modulator
|
||||
|
||||
output of the amateur transmitter
|
||||
|
||||
input of the stereo system
|
||||
|
||||
input of the mixer stage of your SSB transmitter
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 17
|
||||
#29.17 A band-pass filter will:
|
||||
|
||||
pass frequencies each side of a band
|
||||
|
||||
attenuate low frequencies but not high frequencies
|
||||
|
||||
attenuate frequencies each side of a band
|
||||
|
||||
attenuate high frequencies but not low frequencies
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 18
|
||||
#29.18 A band-stop filter will:
|
||||
|
||||
pass frequencies each side of a band
|
||||
|
||||
stop frequencies each side of a band
|
||||
|
||||
only allow one spot frequency through
|
||||
|
||||
pass frequencies below 100 MHz
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 19
|
||||
#29.19 A low-pass filter for a high frequency transmitter output would:
|
||||
|
||||
attenuate frequencies above 30 MHz
|
||||
|
||||
pass audio frequencies below 3 kHz
|
||||
|
||||
attenuate frequencies below 30 MHz
|
||||
|
||||
pass audio frequencies above 3 kHz
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 20
|
||||
#29.20 Installing a low-pass filter between the transmitter and transmission line will:
|
||||
|
||||
permit higher frequency signals to pass to the antenna
|
||||
|
||||
ensure an SWR not exceeding 2:1
|
||||
|
||||
reduce the power output back to the legal maximum
|
||||
|
||||
permit lower frequency signals to pass to the antenna
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 21
|
||||
#29.21 A low-pass filter may be used in an amateur radio installation:
|
||||
|
||||
to attenuate signals lower in frequency than the transmission
|
||||
|
||||
to attenuate signals higher in frequency than the transmission
|
||||
|
||||
to boost the output power of the lower frequency transmissions
|
||||
|
||||
to boost the power of higher frequency transmissions
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 22
|
||||
#29.22 Television interference caused by harmonics radiated from an amateur transmitter could be eliminated by fitting:
|
||||
|
||||
a low-pass filter in the TV receiver antenna input
|
||||
|
||||
a high-pass filter in the transmitter output
|
||||
|
||||
a low-pass filter in the transmitter output
|
||||
|
||||
a band-pass filter to the speech amplifier
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 23
|
||||
#29.23 A high-pass filter can be used to:
|
||||
|
||||
prevent interference to a telephone
|
||||
|
||||
prevent overmodulation in a transmitter
|
||||
|
||||
prevent interference to a TV receiver
|
||||
|
||||
pass a band of speech frequencies in a modulator
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 24
|
||||
#29.24 A high-pass RF filter would normally be fitted:
|
||||
|
||||
between transmitter output and feedline
|
||||
|
||||
at the antenna terminals of a TV receiver
|
||||
|
||||
at the Morse key or keying relay in a transmitter
|
||||
|
||||
between microphone and speech amplifier
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 25
|
||||
#29.25 A high-pass filter attenuates:
|
||||
|
||||
a band of frequencies in the VHF region
|
||||
|
||||
all except a band of VHF frequencies
|
||||
|
||||
high frequencies but not low frequencies
|
||||
|
||||
low frequencies but not high frequencies
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 26
|
||||
#29.26 An operational amplifier connected as a filter always utilises:
|
||||
|
||||
positive feedback to reduce oscillation
|
||||
|
||||
negative feedback
|
||||
|
||||
random feedback
|
||||
|
||||
inductors and resistor circuits only
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 27
|
||||
#29.27 The voltage gain of an operational amplifier at low frequencies is:
|
||||
|
||||
very high but purposely reduced using circuit components
|
||||
|
||||
very low but purposely increased using circuit components
|
||||
|
||||
less than one
|
||||
|
||||
undefined
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 28
|
||||
#29.28 The input impedance of an operational amplifier is generally:
|
||||
|
||||
very high
|
||||
|
||||
very low
|
||||
|
||||
capacitive
|
||||
|
||||
inductive
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 29
|
||||
#29.29 An active audio low-pass filter could be constructed using:
|
||||
|
||||
zener diodes and resistors
|
||||
|
||||
electrolytic capacitors and resistors
|
||||
|
||||
an operational amplifier, resistors and capacitors
|
||||
|
||||
a transformer and capacitors
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 30
|
||||
#29.30 A filter used to attenuate a very narrow band of frequencies centred on 3.6 MHz would be called:
|
||||
|
||||
a band-pass filter
|
||||
|
||||
a high-pass filter
|
||||
|
||||
a low-pass filter
|
||||
|
||||
a notch filter
|
||||
|
||||
% ans 4
|
||||
|
||||
|
264
files/N3.TXT
Normal file
264
files/N3.TXT
Normal file
@ -0,0 +1,264 @@
|
||||
% FILENAME = N3.TXT
|
||||
% Electronics Fundamentals
|
||||
% Release version 3, October 2001
|
||||
% Question 3.7 replaced 9 Aug 2012
|
||||
|
||||
% Question: 1
|
||||
#3.1 The element Silicon is:
|
||||
|
||||
a conductor
|
||||
|
||||
an insulator
|
||||
|
||||
a superconductor
|
||||
|
||||
a semiconductor
|
||||
|
||||
% ans 4
|
||||
|
||||
% Question: 2
|
||||
#3.2 An element which falls somewhere between being an insulator and a conductor is called a:
|
||||
|
||||
P-type conductor
|
||||
|
||||
intrinsic conductor
|
||||
|
||||
semiconductor
|
||||
|
||||
N-type conductor
|
||||
|
||||
% ans 3
|
||||
|
||||
% Question: 3
|
||||
#3.3 In an atom:
|
||||
|
||||
the protons and the neutrons orbit the nucleus in opposite directions
|
||||
|
||||
the protons orbit around the neutrons
|
||||
|
||||
the electrons orbit the nucleus
|
||||
|
||||
the electrons and the neutrons orbit the nucleus
|
||||
|
||||
% ans 3
|
||||
|
||||
% Question: 4
|
||||
#3.4 An atom that loses an electron becomes:
|
||||
|
||||
a positive ion
|
||||
|
||||
an isotope
|
||||
|
||||
a negative ion
|
||||
|
||||
a radioactive atom
|
||||
|
||||
% ans 1
|
||||
|
||||
% Question: 5
|
||||
#3.5 An electric current passing through a wire will produce around the conductor:
|
||||
|
||||
an electric field
|
||||
|
||||
a magnetic field
|
||||
|
||||
an electrostatic field
|
||||
|
||||
nothing
|
||||
|
||||
% ans 2
|
||||
|
||||
% Question: 6
|
||||
#3.6 These magnetic poles repel:
|
||||
|
||||
unlike
|
||||
|
||||
like
|
||||
|
||||
positive
|
||||
|
||||
negative
|
||||
|
||||
% ans 2
|
||||
|
||||
% Question: 7
|
||||
#3.7 A common use for a magnet is in:
|
||||
|
||||
A computer speaker
|
||||
|
||||
An optical mouse
|
||||
|
||||
A keyboard
|
||||
|
||||
A magnetic loop antenna
|
||||
|
||||
% ans 1
|
||||
|
||||
% Question: 8
|
||||
#3.8 The better conductor of electricity is:
|
||||
|
||||
copper
|
||||
|
||||
carbon
|
||||
|
||||
silicon
|
||||
|
||||
aluminium
|
||||
|
||||
% ans 1
|
||||
|
||||
% Question: 9
|
||||
#3.9 The term describing opposition to electron flow in a metallic circuit is:
|
||||
|
||||
current
|
||||
|
||||
voltage
|
||||
|
||||
resistance
|
||||
|
||||
power
|
||||
|
||||
% ans 3
|
||||
|
||||
% Question: 10
|
||||
#3.10 The substance which will most readily allow an electric current to flow is:
|
||||
|
||||
an insulator
|
||||
|
||||
a conductor
|
||||
|
||||
a resistor
|
||||
|
||||
a dielectric
|
||||
|
||||
% ans 2
|
||||
|
||||
% Question: 11
|
||||
#3.11 The plastic coating formed around wire is:
|
||||
|
||||
an insulator
|
||||
|
||||
a conductor
|
||||
|
||||
an inductor
|
||||
|
||||
a magnet
|
||||
|
||||
% ans 1
|
||||
|
||||
% Question: 12
|
||||
#3.12 The following is a source of electrical energy:
|
||||
|
||||
p-channel FET
|
||||
|
||||
carbon resistor
|
||||
|
||||
germanium diode
|
||||
|
||||
lead acid battery
|
||||
|
||||
% ans 4
|
||||
|
||||
% Question: 13
|
||||
#3.13 An important difference between a common torch battery and a lead acid battery is that only the lead acid battery:
|
||||
|
||||
has two terminals
|
||||
|
||||
contains an electrolyte
|
||||
|
||||
can be re-charged
|
||||
|
||||
can be effectively discharged
|
||||
|
||||
% ans 3
|
||||
|
||||
% Question: 14
|
||||
#3.14 As temperature increases, the resistance of a metallic conductor:
|
||||
|
||||
increases
|
||||
|
||||
decreases
|
||||
|
||||
remains constant
|
||||
|
||||
becomes negative
|
||||
|
||||
% ans 1
|
||||
|
||||
% Question: 15
|
||||
#3.15 In an n-type semiconductor, the current carriers are:
|
||||
|
||||
holes
|
||||
|
||||
electrons
|
||||
|
||||
positive ions
|
||||
|
||||
photons
|
||||
|
||||
% ans 2
|
||||
|
||||
% Question: 16
|
||||
#3.16 In a p-type semiconductor, the current carriers are:
|
||||
|
||||
photons
|
||||
|
||||
electrons
|
||||
|
||||
positive ions
|
||||
|
||||
holes
|
||||
|
||||
% ans 4
|
||||
|
||||
% Question: 17
|
||||
#3.17 An electrical insulator:
|
||||
|
||||
lets electricity flow through it in one direction
|
||||
|
||||
does not let electricity flow through it
|
||||
|
||||
lets electricity flow through it when light shines on it
|
||||
|
||||
lets electricity flow through it
|
||||
|
||||
% ans 2
|
||||
|
||||
% Question: 18
|
||||
#3.18 Four good electrical insulators are:
|
||||
|
||||
plastic, rubber, wood, carbon
|
||||
|
||||
glass, wood, copper, porcelain
|
||||
|
||||
paper, glass, air, aluminium
|
||||
|
||||
glass, air, plastic, porcelain
|
||||
|
||||
% ans 4
|
||||
|
||||
% Question: 19
|
||||
#3.19 Three good electrical conductors are:
|
||||
|
||||
copper, gold, mica
|
||||
|
||||
gold, silver, wood
|
||||
|
||||
gold, silver, aluminium
|
||||
|
||||
copper, aluminium, paper
|
||||
|
||||
% ans 3
|
||||
|
||||
% Question: 20
|
||||
#3.20 The name for the flow of electrons in an electric circuit is:
|
||||
|
||||
voltage
|
||||
|
||||
resistance
|
||||
|
||||
capacitance
|
||||
|
||||
current
|
||||
|
||||
% ans 4
|
145
files/N30.TXT
Normal file
145
files/N30.TXT
Normal file
@ -0,0 +1,145 @@
|
||||
% FILENAME N30.TXT
|
||||
% Digital Systems
|
||||
% Release version 3, October 2001
|
||||
% Q 9 modified 6 Mar 2012
|
||||
|
||||
%QUESTION: 1
|
||||
#30.1 <img src = "digista.gif" align = right width = 352 height = 93>
|
||||
<extralines = 1 totallines = 6 >
|
||||
In the block diagram shown, the block designated "modem" is a:
|
||||
|
||||
modulator/demodulator
|
||||
|
||||
modulation emphasis unit
|
||||
|
||||
Morse demodulator
|
||||
|
||||
MOSFET de-emphasis unit
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 2
|
||||
#30.2 <img src = "digista.gif" align = right width = 352 height = 93>
|
||||
<extralines = 1 totallines = 6 >
|
||||
In the block diagram shown, the "modem":
|
||||
|
||||
monitors the demodulated signals
|
||||
|
||||
de-emphasises the modulated data
|
||||
|
||||
translates digital signals to and from audio signals
|
||||
|
||||
determines the modulation protocol
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 3
|
||||
#30.3 The following can be adapted for use as a modem:
|
||||
|
||||
an electronic keyer
|
||||
|
||||
a spare transceiver
|
||||
|
||||
a spare receiver
|
||||
|
||||
a computer sound-card
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 4
|
||||
#30.4 The following are three digital communication modes:
|
||||
|
||||
DSBSC, PACTOR, NBFM
|
||||
|
||||
AGC, FSK, Clover
|
||||
|
||||
PSK31, AFC, PSSN
|
||||
|
||||
AMTOR, PACTOR, PSK31
|
||||
|
||||
% ans 4
|
||||
|
||||
%QUESTION: 5
|
||||
#30.5 In digital communications, FSK stands for:
|
||||
|
||||
phase selection keying
|
||||
|
||||
final section keying
|
||||
|
||||
frequency shift keying
|
||||
|
||||
final signal keying
|
||||
|
||||
% ans 3
|
||||
|
||||
%QUESTION: 6
|
||||
#30.6 In digital communications, BPSK stands for:
|
||||
|
||||
binary phase shift keying
|
||||
|
||||
baseband polarity shift keying
|
||||
|
||||
band pass selective keying
|
||||
|
||||
burst pulse signal keying
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 7
|
||||
#30.7 When your HF digital transmission is received with errors due to multi-path
|
||||
conditions, you should:
|
||||
|
||||
increase transmitter power
|
||||
|
||||
reduce transmitted baud rate
|
||||
|
||||
reduce transmitter power
|
||||
|
||||
change frequency slightly
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 8
|
||||
#30.8 The letters BBS stand for:
|
||||
|
||||
binary baud system
|
||||
|
||||
bulletin board system
|
||||
|
||||
basic binary selector
|
||||
|
||||
broadcast band stopper
|
||||
|
||||
% ans 2
|
||||
|
||||
%QUESTION: 9
|
||||
#30.9 APRS is an adaptation of packet radio. APRS stands for
|
||||
|
||||
Automatic Packet Reporting System
|
||||
|
||||
Amateur Position Reporting System
|
||||
|
||||
Automatic Packet Relay System
|
||||
|
||||
Amateur Position Relay System
|
||||
|
||||
% ans 1
|
||||
|
||||
%QUESTION: 10
|
||||
#30.10 The following communication mode is generally used for connecting to a
|
||||
VHF packet radio bulletin board:
|
||||
|
||||
SSB
|
||||
|
||||
AM
|
||||
|
||||
FM
|
||||
|
||||
DSB
|
||||
|
||||
% ans 3
|
||||
|
||||
|
||||
|
||||
|
||||
|
134
files/N4.TXT
Normal file
134
files/N4.TXT
Normal file
@ -0,0 +1,134 @@
|
||||
% FILENAME = N4.TXT
|
||||
% Measurement Units
|
||||
% Release version 2, January 2000
|
||||
|
||||
%Question: 1
|
||||
#4.1 The unit of impedance is the:
|
||||
|
||||
ampere
|
||||
|
||||
farad
|
||||
|
||||
henry
|
||||
|
||||
ohm
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 2
|
||||
#4.2 One kilohm is:
|
||||
|
||||
10 ohm
|
||||
|
||||
0.01 ohm
|
||||
|
||||
0.001 ohm
|
||||
|
||||
1000 ohm
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 3
|
||||
#4.3 One kilovolt is equal to:
|
||||
|
||||
10 volt
|
||||
|
||||
100 volt
|
||||
|
||||
1000 volt
|
||||
|
||||
10,000 volt
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 4
|
||||
#4.4 One quarter of one ampere may be written as:
|
||||
|
||||
250 microampere
|
||||
|
||||
0.5 ampere
|
||||
|
||||
0.25 milliampere
|
||||
|
||||
250 milliampere
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 5
|
||||
#4.5 The watt is the unit of:
|
||||
|
||||
power
|
||||
|
||||
magnetic flux
|
||||
|
||||
electromagnetic field strength
|
||||
|
||||
breakdown voltage
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 6
|
||||
#4.6 The voltage 'two volt' is also:
|
||||
|
||||
2000 mV
|
||||
|
||||
2000 kV
|
||||
|
||||
2000 uV
|
||||
|
||||
2000 MV
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 7
|
||||
#4.7 The unit for potential difference between two points in a circuit is the:
|
||||
|
||||
ampere
|
||||
|
||||
volt
|
||||
|
||||
ohm
|
||||
|
||||
coulomb
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 8
|
||||
#4.8 Impedance is a combination of:
|
||||
|
||||
reactance with reluctance
|
||||
|
||||
resistance with conductance
|
||||
|
||||
resistance with reactance
|
||||
|
||||
reactance with radiation
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 9
|
||||
#4.9 One mA is:
|
||||
|
||||
one millionth of one ampere
|
||||
|
||||
one thousandth of one ampere
|
||||
|
||||
one tenth of one ampere
|
||||
|
||||
one millionth of admittance
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 10
|
||||
#4.10 The unit of resistance is the:
|
||||
|
||||
farad
|
||||
|
||||
watt
|
||||
|
||||
ohm
|
||||
|
||||
resistor
|
||||
|
||||
% ans 3
|
||||
|
266
files/N5.TXT
Normal file
266
files/N5.TXT
Normal file
@ -0,0 +1,266 @@
|
||||
% FILENAME = N5.TXT
|
||||
% Ohm's Law
|
||||
Release version 3, October 2001
|
||||
|
||||
%Question: 1
|
||||
#5.1 The voltage across a resistor carrying current can be calculated using the formula:
|
||||
|
||||
E = I + R [voltage equals current plus resistance]
|
||||
|
||||
E = I - R [voltage equals current minus resistance]
|
||||
|
||||
E = I x R [voltage equals current times resistance]
|
||||
|
||||
E = I / R [voltage equals current divided by resistance]
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 2
|
||||
#5.2 A 10 mA current is measured in a 500 ohm resistor. The voltage across the resistor will be:
|
||||
|
||||
5 volt
|
||||
|
||||
50 volt
|
||||
|
||||
500 volt
|
||||
|
||||
5000 volt
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 3
|
||||
#5.3 The value of a resistor to drop 100 volt with a current of 0.8 milliampere is:
|
||||
|
||||
125 ohm
|
||||
|
||||
125 kilohm
|
||||
|
||||
1250 ohm
|
||||
|
||||
1.25 kilohm
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 4
|
||||
#5.4 I = E/R is a mathematical equation describing:
|
||||
|
||||
Ohm's Law
|
||||
|
||||
Thevenin's Theorem
|
||||
|
||||
Kirchoff's First Law
|
||||
|
||||
Kirchoff's Second Law
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 5
|
||||
#5.5 The voltage to cause a current of 4.4 ampere in a 50 ohm resistance is:
|
||||
|
||||
2220 volt
|
||||
|
||||
220 volt
|
||||
|
||||
22.0 volt
|
||||
|
||||
0.222 volt
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 6
|
||||
#5.6 A current of 2 ampere flows through a 16 ohm resistance. The applied voltage is:
|
||||
|
||||
8 volt
|
||||
|
||||
14 volt
|
||||
|
||||
18 volt
|
||||
|
||||
32 volt
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 7
|
||||
#5.7 A current of 5 ampere in a 50 ohm resistance produces a potential difference of:
|
||||
|
||||
20 volt
|
||||
|
||||
45 volt
|
||||
|
||||
55 volt
|
||||
|
||||
250 volt
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 8
|
||||
#5.8 This voltage is needed to cause a current of 200 mA to flow in a lamp of 25 ohm resistance:
|
||||
|
||||
5 volt
|
||||
|
||||
8 volt
|
||||
|
||||
175 volt
|
||||
|
||||
225 volt
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 9
|
||||
#5.9 A current of 0.5 ampere flows through a resistance when 6 volt is applied. To change the
|
||||
current to 0.25 ampere the voltage must be:
|
||||
|
||||
increased to 12 volt
|
||||
|
||||
reduced to 3 volt
|
||||
|
||||
held constant
|
||||
|
||||
reduced to zero
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 10
|
||||
#5.10 The current flowing through a resistor can be calculated by using the formula:
|
||||
|
||||
I = E x R [current equals voltage times resistance]
|
||||
|
||||
I = E / R [current equals voltage divided by resistance]
|
||||
|
||||
I = E + R [current equals voltage plus resistance]
|
||||
|
||||
I = E - R [current equals voltage minus resistance]
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 11
|
||||
#5.11 When an 8 ohm resistor is connected across a 12 volt supply the current flow is:
|
||||
|
||||
12 / 8 amps
|
||||
|
||||
8 / 12 amps
|
||||
|
||||
12 - 8 amps
|
||||
|
||||
12 + 8 amps
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 12
|
||||
#5.12 A circuit has a total resistance of 100 ohm and 50 volt is applied across it. The current flow will be:
|
||||
|
||||
50 mA
|
||||
|
||||
500 mA
|
||||
|
||||
2 ampere
|
||||
|
||||
20 ampere
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 13
|
||||
#5.13 The following formula gives the resistance of a circuit:
|
||||
|
||||
R = I / E [resistance equals current divided by voltage]
|
||||
|
||||
R = E x I [resistance equals voltage times current
|
||||
|
||||
R = E / R [resistance equals voltage divided by resistance]
|
||||
|
||||
R = E / I [resistance equals voltage divided by current]
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 14
|
||||
#5.14 A resistor with 10 volt applied across it and passing a current of 1 mA has a value of:
|
||||
|
||||
10 ohm
|
||||
|
||||
100 ohm
|
||||
|
||||
1 kilohm
|
||||
|
||||
10 kilohm
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 15
|
||||
#5.15 If a 3 volt battery causes 300 mA to flow in a circuit, the circuit resistance is:
|
||||
|
||||
10 ohm
|
||||
|
||||
9 ohm
|
||||
|
||||
5 ohm
|
||||
|
||||
3 ohm
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 16
|
||||
#5.16 A current of 0.5 ampere flows through a resistor when 12 volt is applied. The value of the resistor is:
|
||||
|
||||
6 ohms
|
||||
|
||||
12.5 ohms
|
||||
|
||||
17 ohms
|
||||
|
||||
24 ohms
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 17
|
||||
#5.17 The resistor which gives the greatest opposition to current flow is:
|
||||
|
||||
230 ohm
|
||||
|
||||
1.2 kilohm
|
||||
|
||||
1600 ohm
|
||||
|
||||
0.5 megohm
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 18
|
||||
#5.18 The ohm is the unit of:
|
||||
|
||||
supply voltage
|
||||
|
||||
electrical pressure
|
||||
|
||||
current flow
|
||||
|
||||
electrical resistance
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 19
|
||||
#5.19 If a 12 volt battery supplies 0.15 ampere to a circuit, the circuit's resistance is:
|
||||
|
||||
0.15 ohm
|
||||
|
||||
1.8 ohm
|
||||
|
||||
12 ohm
|
||||
|
||||
80 ohm
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 20
|
||||
#5.20 If a 4800 ohm resistor is connected to a 12 volt battery, the current flow is:
|
||||
|
||||
2.5 mA
|
||||
|
||||
25 mA
|
||||
|
||||
40 A
|
||||
|
||||
400 A
|
||||
|
||||
% ans 1
|
||||
|
||||
|
394
files/N6.TXT
Normal file
394
files/N6.TXT
Normal file
@ -0,0 +1,394 @@
|
||||
% FILENAME = N6.TXT
|
||||
% Resistance
|
||||
% Release version 2, January 2000
|
||||
|
||||
%Question: 1
|
||||
#6.1 The total resistance in a parallel circuit:
|
||||
|
||||
is always less than the smallest resistance
|
||||
|
||||
depends upon the voltage drop across each branch
|
||||
|
||||
could be equal to the resistance of one branch
|
||||
|
||||
depends upon the applied voltage
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 2
|
||||
#6.2 Two resistors are connected in parallel and are connected across a 40 volt battery. If each resistor is 1000 ohms, the total battery current is:
|
||||
|
||||
40 ampere
|
||||
|
||||
40 milliampere
|
||||
|
||||
80 ampere
|
||||
|
||||
80 milliampere
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 3
|
||||
#6.3 The total current in a parallel circuit is equal to the:
|
||||
|
||||
current in any one of the parallel branches
|
||||
|
||||
sum of the currents through all the parallel branches
|
||||
|
||||
applied voltage divided by the value of one of the resistive elements
|
||||
|
||||
source voltage divided by the sum of the resistive elements
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 4
|
||||
#6.4 One way to operate a 3 volt bulb from a 9 volt supply is to connect it in:
|
||||
|
||||
series with the supply
|
||||
|
||||
parallel with the supply
|
||||
|
||||
series with a resistor
|
||||
|
||||
parallel with a resistor
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 5
|
||||
#6.5 You can operate this number of identical lamps, each drawing a current of 250 mA, from a 5A supply:
|
||||
|
||||
50
|
||||
|
||||
30
|
||||
|
||||
20
|
||||
|
||||
5
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 6
|
||||
#6.6 Six identical 2-volt bulbs are connected in series. The supply voltage to cause the bulbs to light normally is:
|
||||
|
||||
12 V
|
||||
|
||||
1.2 V
|
||||
|
||||
6 V
|
||||
|
||||
2 V
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 7
|
||||
#6.7 This many 12 volt bulbs can be arranged in series to form a string of lights to operate from a 240 volt power supply:
|
||||
|
||||
12 x 240
|
||||
|
||||
240 + 12
|
||||
|
||||
240 - 12
|
||||
|
||||
240 / 12
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 8
|
||||
#6.8 Three 10,000 ohm resistors are connected in series across a 90 volt supply. The voltage drop across one of the resistors is:
|
||||
|
||||
30 volt
|
||||
|
||||
60 volt
|
||||
|
||||
90 volt
|
||||
|
||||
15.8 volt
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 9
|
||||
#6.9 Two resistors are connected in parallel. R1 is 75 ohm and R2 is 50 ohm. The total resistance of this parallel circuit is:
|
||||
|
||||
10 ohm
|
||||
|
||||
70 ohm
|
||||
|
||||
30 ohm
|
||||
|
||||
40 ohm
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 10
|
||||
#6.10 A dry cell has an open circuit voltage of 1.5 volt. When supplying a large current the voltage drops to 1.2 volt. This is due to the cell's:
|
||||
|
||||
internal resistance
|
||||
|
||||
voltage capacity
|
||||
|
||||
electrolyte becoming dry
|
||||
|
||||
current capacity
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 11
|
||||
#6.11 A 6 ohm resistor is connected in parallel with a 30 ohm resistor. The total resistance of the combination is:
|
||||
|
||||
5 ohm
|
||||
|
||||
8 ohm
|
||||
|
||||
24 ohm
|
||||
|
||||
35 ohm
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 12
|
||||
#6.12 The total resistance of several resistors connected in series is:
|
||||
|
||||
less than the resistance of any one resistor
|
||||
|
||||
greater than the resistance of any one resistor
|
||||
|
||||
equal to the highest resistance present
|
||||
|
||||
equal to the lowest resistance present
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 13
|
||||
#6.13 Five 10 ohm resistors connected in series give a total resistance of:
|
||||
|
||||
1 ohm
|
||||
|
||||
5 ohms
|
||||
|
||||
10 ohms
|
||||
|
||||
50 ohms
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 14
|
||||
#6.14 Resistors of 10, 270, 3900, and 100 ohm are connected in series. The total resistance is:
|
||||
|
||||
9 ohm
|
||||
|
||||
3900 ohm
|
||||
|
||||
4280 ohm
|
||||
|
||||
10 ohm
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 15
|
||||
#6.15 This combination of series resistors could replace a single 120 ohm resistor:
|
||||
|
||||
five 24 ohm
|
||||
|
||||
six 22 ohm
|
||||
|
||||
two 62 ohm
|
||||
|
||||
five 100 ohm
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 16
|
||||
#6.16 If a 2.2 megohm and a 100 kilohm resistor are connected in series, the total resistance is:
|
||||
|
||||
2.1 megohm
|
||||
|
||||
2.11 megohm
|
||||
|
||||
2.21 megohm
|
||||
|
||||
2.3 megohm
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question:17
|
||||
#6.17 If ten resistors of equal value R are wired in parallel, the total resistance is:
|
||||
|
||||
R
|
||||
|
||||
10R
|
||||
|
||||
10/R
|
||||
|
||||
R/10
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 18
|
||||
#6.18 The total resistance of four 68 ohm resistors wired in parallel is:
|
||||
|
||||
12 ohm
|
||||
|
||||
17 ohm
|
||||
|
||||
34 ohm
|
||||
|
||||
272 ohm
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 19
|
||||
#6.19 Resistors of 68 ohm, 47 kilohm, 560 ohm and 10 ohm are connected in parallel. The total resistance is:
|
||||
|
||||
less than 10 ohm
|
||||
|
||||
between 68 and 560 ohm
|
||||
|
||||
between 560 and and 47 kilohm
|
||||
|
||||
greater than 47 kilohm
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 20
|
||||
#6.20 The following resistor combination can most nearly replace a single 150 ohm resistor:
|
||||
|
||||
four 47 ohm resistors in parallel
|
||||
|
||||
five 33 ohm resistors in parallel
|
||||
|
||||
three 47 ohm resistors in series
|
||||
|
||||
five 33 ohm resistors in series
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 21
|
||||
#6.21 Two 120 ohm resistors are arranged in parallel to replace a faulty resistor. The faulty resistor had an original value of:
|
||||
|
||||
15 ohm
|
||||
|
||||
30 ohm
|
||||
|
||||
60 ohm
|
||||
|
||||
120 ohm
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 22
|
||||
#6.22 Two resistors are in parallel. Resistor A carries twice the current of resistor B which means that:
|
||||
|
||||
A has half the resistance of B
|
||||
|
||||
B has half the resistance of A
|
||||
|
||||
the voltage across A is twice that across B
|
||||
|
||||
the voltage across B is twice that across A
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 23
|
||||
#6.23 The smallest resistance that can be made with five 1 k ohm resistors is:
|
||||
|
||||
50 ohm by arranging them in series
|
||||
|
||||
50 ohm by arranging them in parallel
|
||||
|
||||
200 ohm by arranging them in series
|
||||
|
||||
200 ohm by arranging them in parallel
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 24
|
||||
#6.24 The following combination of 28 ohm resistors has a total resistance of 42 ohm:
|
||||
|
||||
three resistors in series
|
||||
|
||||
three resistors in parallel
|
||||
|
||||
a combination of two resistors in parallel, then placed in series with another resistor
|
||||
|
||||
a combination of two resistors in parallel, then placed in series with another two in parallel
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 25
|
||||
#6.25 Two 100 ohm resistors connected in parallel are wired in series with a 10 ohm resistor. The total resistance of the combination is:
|
||||
|
||||
60 ohms
|
||||
|
||||
180 ohms
|
||||
|
||||
190 ohms
|
||||
|
||||
210 ohms
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 26
|
||||
#6.26 A 5 ohm and a 10 ohm resistor are wired in series and connected to a 15 volt power supply. The current flowing from the power supply is:
|
||||
|
||||
0.5 ampere
|
||||
|
||||
1 ampere
|
||||
|
||||
2 ampere
|
||||
|
||||
15 ampere
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 27
|
||||
#6.27 Three 12 ohm resistors are wired in parallel and connected to an 8 volt supply. The total current flow from the supply is:
|
||||
|
||||
1 ampere
|
||||
|
||||
2 amperes
|
||||
|
||||
3 amperes
|
||||
|
||||
4.5 amperes
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 28
|
||||
#6.28 Two 33 ohm resistors are connected in series with a power supply. If the current flowing is 100 mA, the voltage across one of the resistors is:
|
||||
|
||||
66 volt
|
||||
|
||||
33 volt
|
||||
|
||||
3.3 volt
|
||||
|
||||
1 volt
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 29
|
||||
#6.29 A simple transmitter requires a 50 ohm dummy load. You can fabricate this from:
|
||||
|
||||
four 300 ohm resistors in parallel
|
||||
|
||||
five 300 ohm resistors in parallel
|
||||
|
||||
six 300 ohm resistors in parallel
|
||||
|
||||
seven 300 ohm resistors in parallel
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 30
|
||||
#6.30 Three 500 ohm resistors are wired in series. Short-circuiting the centre resistor will change the value of the network from:
|
||||
|
||||
1500 ohm to 1000 ohm
|
||||
|
||||
500 ohm to 1000 ohm
|
||||
|
||||
1000 ohm to 500 ohm
|
||||
|
||||
1000 ohm to 1500 ohm
|
||||
|
||||
% ans 1
|
||||
|
265
files/N7.TXT
Normal file
265
files/N7.TXT
Normal file
@ -0,0 +1,265 @@
|
||||
% FILENAME = N7.TXT
|
||||
% Power calculations
|
||||
% Release 3, October 2001
|
||||
|
||||
%Question: 1
|
||||
#7.1 A transmitter power amplifier requires 30 mA at 300 volt. The DC input power is:
|
||||
|
||||
300 watt
|
||||
|
||||
9000 watt
|
||||
|
||||
9 watt
|
||||
|
||||
6 watt
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 2
|
||||
#7.2 The DC input power of a transmitter operating at 12 volt and drawing 500 milliamp would be:
|
||||
|
||||
6 watt
|
||||
|
||||
12 watt
|
||||
|
||||
20 watt
|
||||
|
||||
500 watt
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 3
|
||||
#7.3 When two 500 ohm 1 watt resistors are connected in series, the maximum total power that can be dissipated by both resistors is:
|
||||
|
||||
4 watt
|
||||
|
||||
2 watt
|
||||
|
||||
1 watt
|
||||
|
||||
1/2 watt
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 4
|
||||
#7.4 When two 1000 ohm 5 watt resistors are connected in parallel, they can dissipate a maximum total power of:
|
||||
|
||||
40 watt
|
||||
|
||||
20 watt
|
||||
|
||||
10 watt
|
||||
|
||||
5 watt
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 5
|
||||
#7.5 The current in a 100 kilohm resistor is 10 mA. The power dissipated is:
|
||||
|
||||
1 watt
|
||||
|
||||
10 watt
|
||||
|
||||
100 watt
|
||||
|
||||
10,000 watt
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 6
|
||||
#7.6 A current of 500 milliamp passes through a 1000 ohm resistance. The power dissipated is:
|
||||
|
||||
0.25 watt
|
||||
|
||||
2.5 watt
|
||||
|
||||
25 watt
|
||||
|
||||
250 watt
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 7
|
||||
#7.7 A 20 ohm resistor carries a current of 0.25 ampere. The power dissipated is:
|
||||
|
||||
1.25 watt
|
||||
|
||||
5 watt
|
||||
|
||||
2.50 watt
|
||||
|
||||
10 watt
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 8
|
||||
#7.8 If 200 volt is applied to a 2000 ohm resistor, the resistor will dissipate:
|
||||
|
||||
20 watt
|
||||
|
||||
30 watt
|
||||
|
||||
10 watt
|
||||
|
||||
40 watt
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 9
|
||||
#7.9 The power delivered to an antenna is 500 watt. The effective antenna resistance is 20 ohm. The antenna current is:
|
||||
|
||||
25 amp
|
||||
|
||||
2.5 amp
|
||||
|
||||
10 amp
|
||||
|
||||
5 amp
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 10
|
||||
#7.10 The unit for power is the:
|
||||
|
||||
ohm
|
||||
|
||||
watt
|
||||
|
||||
ampere
|
||||
|
||||
volt
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 11
|
||||
#7.11 The following two quantities should be multiplied together to find power:
|
||||
|
||||
resistance and capacitance
|
||||
|
||||
voltage and current
|
||||
|
||||
voltage and inductance
|
||||
|
||||
inductance and capacitance
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 12
|
||||
#7.12 The following two electrical units multiplied together give the unit "watt":
|
||||
|
||||
volt and ampere
|
||||
|
||||
volt and farad
|
||||
|
||||
farad and henry
|
||||
|
||||
ampere and henry
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 13
|
||||
#7.13 The power dissipation of a resistor carrying a current of 10 mA with 10 volt across it is:
|
||||
|
||||
0.01 watt
|
||||
|
||||
0.1 watt
|
||||
|
||||
1 watt
|
||||
|
||||
10 watt
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 14
|
||||
#7.14 If two 10 ohm resistors are connected in series with a 10 volt battery, the battery load is:
|
||||
|
||||
5 watt
|
||||
|
||||
10 watt
|
||||
|
||||
20 watt
|
||||
|
||||
100 watt
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 15
|
||||
#7.15 Each of 9 resistors in a circuit is dissipating 4 watt. If the circuit operates from a 12 volt supply, the total current flowing in the circuit is:
|
||||
|
||||
48 ampere
|
||||
|
||||
36 ampere
|
||||
|
||||
9 ampere
|
||||
|
||||
3 ampere
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 16
|
||||
#7.16 Three 18 ohm resistors are connected in parallel across a 12 volt supply. The total power
|
||||
dissipation of the resistor load is:
|
||||
|
||||
3 watt
|
||||
|
||||
18 watt
|
||||
|
||||
24 watt
|
||||
|
||||
36 watt
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 17
|
||||
#7.17 A resistor of 10 kilohm carries a current of 20 mA. The power dissipated in the resistor is:
|
||||
|
||||
2 watt
|
||||
|
||||
4 watt
|
||||
|
||||
20 watt
|
||||
|
||||
40 watt
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 18
|
||||
#7.18 A resistor in a circuit becomes very hot and starts to burn. This is because the resistor is dissipating too much:
|
||||
|
||||
current
|
||||
|
||||
voltage
|
||||
|
||||
resistance
|
||||
|
||||
power
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 19
|
||||
#7.19 A current of 10 ampere rms at a frequency of 50 Hz flows through a 100 ohm resistor. The
|
||||
power dissipated is:
|
||||
|
||||
500 watt
|
||||
|
||||
707 watt
|
||||
|
||||
10,000 watt
|
||||
|
||||
50,000 watt
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 20
|
||||
#7.20 The voltage applied to two resistors in series is doubled. The total power dissipated will:
|
||||
|
||||
increase by four times
|
||||
|
||||
decrease to half
|
||||
|
||||
double
|
||||
|
||||
not change
|
||||
|
||||
% ans 1
|
134
files/N8.TXT
Normal file
134
files/N8.TXT
Normal file
@ -0,0 +1,134 @@
|
||||
% FILENAME = N8.TXT
|
||||
% Alternating Current
|
||||
% Release version 2, January 2000
|
||||
|
||||
%Question: 1
|
||||
#8.1 An 'alternating current' is so called because:
|
||||
|
||||
it reverses direction periodically
|
||||
|
||||
it travels through a circuit using alternate paths
|
||||
|
||||
its direction of travel is uncertain
|
||||
|
||||
its direction of travel can be altered by a switch
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 2
|
||||
#8.2 The time for one cycle of a 100 Hz signal is:
|
||||
|
||||
1 second
|
||||
|
||||
0.01 second
|
||||
|
||||
0.0001 second
|
||||
|
||||
10 seconds
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 3
|
||||
#8.3 A 50 hertz current in a wire means that:
|
||||
|
||||
a potential difference of 50 volts exists across the wire
|
||||
|
||||
the current flowing in the wire is 50 amperes
|
||||
|
||||
the power dissipated in the wire is 50 watts
|
||||
|
||||
a cycle is completed 50 times in each second
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 4
|
||||
#8.4 The current in an AC circuit completes a cycle in 0.1 second. So the frequency is:
|
||||
|
||||
1 Hz
|
||||
|
||||
10 Hz
|
||||
|
||||
100 Hz
|
||||
|
||||
1000 Hz
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 5
|
||||
#8.5 An impure signal is found to have 2 kHz and 4 kHz components. This 4 kHz signal is:
|
||||
|
||||
a fundamental of the 2 kHz signal
|
||||
|
||||
a sub-harmonic of 2 kHz
|
||||
|
||||
the DC component of the main signal
|
||||
|
||||
a harmonic of the 2 kHz signal
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 6
|
||||
#8.6 The correct name for the equivalent of 'one cycle per second' is one:
|
||||
|
||||
henry
|
||||
|
||||
volt
|
||||
|
||||
hertz
|
||||
|
||||
coulomb
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 7
|
||||
#8.7 One megahertz is equal to:
|
||||
|
||||
0.0001 Hz
|
||||
|
||||
100 kHz
|
||||
|
||||
1000 kHz
|
||||
|
||||
10 Hz
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 8
|
||||
#8.8 One GHz is equal to:
|
||||
|
||||
1000 kHz
|
||||
|
||||
10 MHz
|
||||
|
||||
100 MHz
|
||||
|
||||
1000 MHz
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 9
|
||||
#8.9 The 'rms value' of a sine-wave signal is:
|
||||
|
||||
half the peak voltage
|
||||
|
||||
1.414 times the peak voltage
|
||||
|
||||
the peak-to-peak voltage
|
||||
|
||||
0.707 times the peak voltage
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 10
|
||||
#8.10 A sine-wave alternating current of 10 ampere peak has an rms value of:
|
||||
|
||||
5 amp
|
||||
|
||||
7.07 amp
|
||||
|
||||
14.14 amp
|
||||
|
||||
20 amp
|
||||
|
||||
% ans 2
|
||||
|
288
files/N9.TXT
Normal file
288
files/N9.TXT
Normal file
@ -0,0 +1,288 @@
|
||||
% FILENAME = N9.TXTR
|
||||
% Capacitors, Inductors, Resonance
|
||||
% Release version 2, January 2000
|
||||
% Q 3 deleted "radio" 6 Mar 2012. PDF is corrected already
|
||||
|
||||
%Question: 1
|
||||
#9.1 The total capacitance of two or more capacitors in series is:
|
||||
|
||||
always less than that of the smallest capacitor
|
||||
|
||||
always greater than that of the largest capacitor
|
||||
|
||||
found by adding each of the capacitances together
|
||||
|
||||
found by adding the capacitances together and dividing by their total number
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 2
|
||||
#9.2 Filter capacitors in power supplies are sometimes connected in series to:
|
||||
|
||||
withstand a greater voltage than a single capacitor can withstand
|
||||
|
||||
increase the total capacity
|
||||
|
||||
reduce the ripple voltage further
|
||||
|
||||
resonate the filter circuit
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 3
|
||||
#9.3 A component is identified as a capacitor if its value is measured
|
||||
in:
|
||||
|
||||
microvolts
|
||||
|
||||
millihenrys
|
||||
|
||||
megohms
|
||||
|
||||
microfarads
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 4
|
||||
#9.4 Two metal plates separated by air form a 0.001 uF capacitor. Its value may
|
||||
be changed to 0.002 uF by:
|
||||
|
||||
bringing the metal plates closer together
|
||||
|
||||
making the plates smaller in size
|
||||
|
||||
moving the plates apart
|
||||
|
||||
touching the two plates together
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 5
|
||||
#9.5 The material separating the plates of a capacitor is the:
|
||||
|
||||
dielectric
|
||||
|
||||
semiconductor
|
||||
|
||||
resistor
|
||||
|
||||
lamination
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 6
|
||||
#9.6 Three 15 picofarad capacitors are wired in parallel. The value of the
|
||||
combination is:
|
||||
|
||||
45 picofarad
|
||||
|
||||
18 picofarad
|
||||
|
||||
12 picofarad
|
||||
|
||||
5 picofarad
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 7
|
||||
#9.7 Capacitors and inductors oppose an alternating current. This is known as:
|
||||
|
||||
resistance
|
||||
|
||||
resonance
|
||||
|
||||
conductance
|
||||
|
||||
reactance
|
||||
|
||||
% ans 4
|
||||
|
||||
%Question: 8
|
||||
#9.8 The reactance of a capacitor increases as the:
|
||||
|
||||
frequency increases
|
||||
|
||||
frequency decreases
|
||||
|
||||
applied voltage increases
|
||||
|
||||
applied voltage decreases
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 9
|
||||
#9.9 The reactance of an inductor increases as the:
|
||||
|
||||
frequency increases
|
||||
|
||||
frequency decreases
|
||||
|
||||
applied voltage increases
|
||||
|
||||
applied voltage decreases
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 10
|
||||
#9.10 Increasing the number of turns on an inductor will make its inductance:
|
||||
|
||||
decrease
|
||||
|
||||
increase
|
||||
|
||||
remain unchanged
|
||||
|
||||
become resistive
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 11
|
||||
#9.11 The unit of inductance is the:
|
||||
|
||||
farad
|
||||
|
||||
henry
|
||||
|
||||
ohm
|
||||
|
||||
reactance
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 12
|
||||
#9.12 Two 20 uH inductances are connected in series. The total inductance is:
|
||||
|
||||
10 uH
|
||||
|
||||
20 uH
|
||||
|
||||
40 uH
|
||||
|
||||
80 uH
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 13
|
||||
#9.13 Two 20 uH inductances are connected in parallel. The total inductance is:
|
||||
|
||||
10 uH
|
||||
|
||||
20 uH
|
||||
|
||||
40 uH
|
||||
|
||||
80 uH
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 14
|
||||
#9.14 A toroidal inductor is one in which the:
|
||||
|
||||
windings are wound on a closed ring of magnetic material
|
||||
|
||||
windings are air-spaced
|
||||
|
||||
windings are wound on a ferrite rod
|
||||
|
||||
inductor is enclosed in a magnetic shield
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 15
|
||||
#9.15 A transformer with 100 turns on the primary winding and 10 turns on the
|
||||
secondary winding is connected to 230 volt AC mains. The voltage across the
|
||||
secondary is:
|
||||
|
||||
10 volt
|
||||
|
||||
23 volt
|
||||
|
||||
110 volt
|
||||
|
||||
2300 volt
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 16
|
||||
#9.16 An inductor and a capacitor are connected in series. At the resonant
|
||||
frequency the resulting impedance is:
|
||||
|
||||
maximum
|
||||
|
||||
minimum
|
||||
|
||||
totally reactive
|
||||
|
||||
totally inductive
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 17
|
||||
#9.17 An inductor and a capacitor are connected in parallel. At the resonant
|
||||
frequency the resulting impedance is:
|
||||
|
||||
maximum
|
||||
|
||||
minimum
|
||||
|
||||
totally reactive
|
||||
|
||||
totally inductive
|
||||
|
||||
% ans 1
|
||||
|
||||
%Question: 18
|
||||
#9.18 An inductor and a capacitor form a resonant circuit. The capacitor value
|
||||
is increased by four times. The resonant frequency will:
|
||||
|
||||
increase by four times
|
||||
|
||||
double
|
||||
|
||||
decrease to half
|
||||
|
||||
decrease to one quarter
|
||||
|
||||
% ans 3
|
||||
|
||||
%Question: 19
|
||||
#9.19 An inductor and a capacitor form a resonant circuit. If the value of the
|
||||
inductor is decreased by a factor of four, the resonant frequency will:
|
||||
|
||||
increase by a factor of four
|
||||
|
||||
increase by a factor of two
|
||||
|
||||
decrease by a factor of two
|
||||
|
||||
decrease by a factor of four
|
||||
|
||||
% ans 2
|
||||
|
||||
%Question: 20
|
||||
#9.20 A "high Q" resonant circuit is one which:
|
||||
|
||||
carries a high quiescent current
|
||||
|
||||
is highly selective
|
||||
|
||||
has a wide bandwidth
|
||||
|
||||
uses a high value inductance
|
||||
|
||||
% ans 2
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
70
insert.php
70
insert.php
@ -1,24 +1,26 @@
|
||||
<?php
|
||||
require_once("includes/include.php");
|
||||
if (isset($_REQUEST['raw'])) {
|
||||
$files = glob("files/*");
|
||||
foreach($files as $file) {
|
||||
$fileOpen = file_get_contents($file);
|
||||
$fileOpen = implode("\n", array_slice(explode("\n", $fileOpen), 6));
|
||||
$fileOpen = substr($fileOpen, 1);
|
||||
$questions = [];
|
||||
$data = explode("%", $_REQUEST['raw']);
|
||||
$data = explode("%", $fileOpen);
|
||||
$data = array_map('trim', $data);
|
||||
foreach($data as $i=>$d) {
|
||||
if(empty($d)) continue;
|
||||
foreach ($data as $i => $d) {
|
||||
if (empty($d)) continue;
|
||||
if (strpos(strtolower($d), 'question') !== false) {
|
||||
$fullQuestion = substr(preg_replace('/^.+\n/', '', $d),1); //Strip useless firstline.
|
||||
$fullQuestion = substr(preg_replace('/^.+\n/', '', $d), 1); //Strip useless firstline.
|
||||
$numbers = explode(" ", $fullQuestion);
|
||||
$questions[$i]['questionNumber'] = $numbers[0]; // Get # of question
|
||||
$lengthOfNumber = strlen($questions[$i]['questionNumber']); //Get length of #
|
||||
$splitNewLine = explode("\n", trim($fullQuestion)); //Split rest into lines.
|
||||
$twoLineQuestion = $imageFirstLine = false;
|
||||
$twoLineQuestion = $imageFirstLine = $threeLineQuestion = false;
|
||||
if (strpos(strtolower($splitNewLine[0]), '<img') !== false) {
|
||||
preg_match('/".*?"/', $splitNewLine[0], $matches);
|
||||
$questions[$i]['image'] = strtoupper($matches[0]);
|
||||
$imageFirstLine = true;
|
||||
}
|
||||
if ($imageFirstLine) {
|
||||
|
||||
if (strpos($splitNewLine[1], ':') !== false || !empty(trim($splitNewLine[2]))) {
|
||||
$twoLineQuestion = true;
|
||||
}
|
||||
@ -29,20 +31,31 @@ if (isset($_REQUEST['raw'])) {
|
||||
. $splitNewLine[2] : $firstLine), $lengthOfNumber));
|
||||
} else {
|
||||
if (strpos($splitNewLine[0], ':') !== false || !empty(trim($splitNewLine[1]))) {
|
||||
if (strpos($splitNewLine[0], ':') !== false) {
|
||||
$twoLineQuestion = true;
|
||||
if (strpos(strtolower($splitNewLine[1]), '<img') !== false) {
|
||||
$twoLineQuestion = false;
|
||||
preg_match('/".*?"/', $splitNewLine[1], $matches);
|
||||
$questions[$i]['image'] = strtoupper($matches[0]);
|
||||
}
|
||||
} elseif (!empty(trim($splitNewLine[2]))) {
|
||||
$threeLineQuestion = true;
|
||||
}
|
||||
}
|
||||
$questions[$i]['question'] = trim(substr(($twoLineQuestion ? $splitNewLine[0] . " "
|
||||
. $splitNewLine[1] : $splitNewLine[0]), $lengthOfNumber));
|
||||
}
|
||||
$x=$b=1;
|
||||
foreach ($splitNewLine as $a=>$line) {
|
||||
if($a==0) continue;
|
||||
if(($twoLineQuestion || $imageFirstLine) && $a==1) continue;
|
||||
if($twoLineQuestion && $imageFirstLine && $a==2) continue;
|
||||
if(empty(trim($line))) continue;
|
||||
if(strpos(strtolower($line), 'totallines') !== false) continue;
|
||||
$x = $b = 1;
|
||||
foreach ($splitNewLine as $a => $line) {
|
||||
//Don't ask what this witchcraft is.
|
||||
if ($a == 0) continue;
|
||||
if (($twoLineQuestion || $imageFirstLine) && $a == 1) continue;
|
||||
if ($threeLineQuestion || ($twoLineQuestion && $imageFirstLine) && $a == 2) continue;
|
||||
if ($imageFirstLine && $threeLineQuestion && $a == 3) continue;
|
||||
if (empty(trim($line))) continue;
|
||||
if (strpos(strtolower($line), 'totallines') !== false) continue;
|
||||
|
||||
if(strpos(strtolower($line), '<img') !== false) {
|
||||
if (strpos(strtolower($line), '<img') !== false) {
|
||||
preg_match('/".*?"/', $line, $matches);
|
||||
$questions[$i]['image'] = strtoupper($matches[0]);
|
||||
continue;
|
||||
@ -50,34 +63,33 @@ if (isset($_REQUEST['raw'])) {
|
||||
$questions[$i]['answers'][$b] = trim($line);
|
||||
$b++;
|
||||
}
|
||||
} elseif (strpos($d, 'ans ') !== false) {
|
||||
$questions[$i-1]['correctAnswer'] = substr($d, 3);
|
||||
} elseif (strpos(strtolower($d), 'ans ') !== false) {
|
||||
$questions[$i - 1]['correctAnswer'] = substr($d, 3);
|
||||
}
|
||||
}
|
||||
|
||||
$i = $b = $d = $a = 0; //Clear the useless stuff from above.
|
||||
if(isset($_REQUEST['insert']) && $_REQUEST['insert'] == 1 && count($questions)) {
|
||||
if (isset($_REQUEST['insert']) && $_REQUEST['insert'] == 1 && count($questions)) {
|
||||
$count = 0;
|
||||
foreach($questions as $q) {
|
||||
foreach ($questions as $q) {
|
||||
$db = new db();
|
||||
$db->query("INSERT INTO question(question_time, questiondata_number, questiondata_content, questiondata_image)
|
||||
VALUES(:qTime, :qNumber, :qContent, :qImage)");
|
||||
$db->bind("qTime",time());
|
||||
$db->bind("qNumber", $q['questionNumber']?:0);
|
||||
$db->bind("qContent",$q['question']);
|
||||
$db->bind("qImage",$q['image']?:"");
|
||||
$db->bind("qTime", time());
|
||||
$db->bind("qNumber", $q['questionNumber'] ?: 0);
|
||||
$db->bind("qContent", $q['question']);
|
||||
$db->bind("qImage", $q['image'] ?: "");
|
||||
$db->execute();
|
||||
$lastRow = $db->lastInsertId();
|
||||
$db->kill(); //IS THIS EVEN NEEDED?
|
||||
$row = 1;
|
||||
foreach($q['answers'] as $a) {
|
||||
foreach ($q['answers'] as $a) {
|
||||
$db = new db();
|
||||
$db->query("INSERT INTO answer(answer_time, answerdata_content, answerdata_question, answerdata_correct)
|
||||
VALUES(:aTime, :aContent, :aQuestion, :aCorrect)");
|
||||
$db->bind("aTime", time());
|
||||
$db->bind("aContent", $a);
|
||||
$db->bind("aQuestion", $lastRow);
|
||||
$db->bind("aCorrect",($q['correctAnswer']==$row?"1":"0"));
|
||||
$db->bind("aCorrect", ($q['correctAnswer'] == $row ? "1" : "0"));
|
||||
$db->execute();
|
||||
$db->kill();
|
||||
$row++;
|
||||
@ -85,7 +97,7 @@ if (isset($_REQUEST['raw'])) {
|
||||
$db = null;
|
||||
}
|
||||
|
||||
echo "Inserted ".$count." questions.";
|
||||
echo "Inserted " . $count . " questions.";
|
||||
} else {
|
||||
var_dump($questions);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user