0.2.0 - Mid migration

This commit is contained in:
Daniel Mason 2022-04-25 14:47:15 +12:00
parent 139e6a915e
commit 7e38fdbd7d
42393 changed files with 5358157 additions and 62 deletions

959
web/node_modules/regenerator-transform/lib/emit.js generated vendored Normal file
View file

@ -0,0 +1,959 @@
"use strict";
var _interopRequireWildcard = require("@babel/runtime/helpers/interopRequireWildcard");
var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault");
var _assert = _interopRequireDefault(require("assert"));
var leap = _interopRequireWildcard(require("./leap"));
var meta = _interopRequireWildcard(require("./meta"));
var util = _interopRequireWildcard(require("./util"));
/**
* Copyright (c) 2014-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
var hasOwn = Object.prototype.hasOwnProperty;
function Emitter(contextId) {
_assert["default"].ok(this instanceof Emitter);
util.getTypes().assertIdentifier(contextId); // Used to generate unique temporary names.
this.nextTempId = 0; // In order to make sure the context object does not collide with
// anything in the local scope, we might have to rename it, so we
// refer to it symbolically instead of just assuming that it will be
// called "context".
this.contextId = contextId; // An append-only list of Statements that grows each time this.emit is
// called.
this.listing = []; // A sparse array whose keys correspond to locations in this.listing
// that have been marked as branch/jump targets.
this.marked = [true];
this.insertedLocs = new Set(); // The last location will be marked when this.getDispatchLoop is
// called.
this.finalLoc = this.loc(); // A list of all leap.TryEntry statements emitted.
this.tryEntries = []; // Each time we evaluate the body of a loop, we tell this.leapManager
// to enter a nested loop context that determines the meaning of break
// and continue statements therein.
this.leapManager = new leap.LeapManager(this);
}
var Ep = Emitter.prototype;
exports.Emitter = Emitter; // Offsets into this.listing that could be used as targets for branches or
// jumps are represented as numeric Literal nodes. This representation has
// the amazingly convenient benefit of allowing the exact value of the
// location to be determined at any time, even after generating code that
// refers to the location.
Ep.loc = function () {
var l = util.getTypes().numericLiteral(-1);
this.insertedLocs.add(l);
return l;
};
Ep.getInsertedLocs = function () {
return this.insertedLocs;
};
Ep.getContextId = function () {
return util.getTypes().clone(this.contextId);
}; // Sets the exact value of the given location to the offset of the next
// Statement emitted.
Ep.mark = function (loc) {
util.getTypes().assertLiteral(loc);
var index = this.listing.length;
if (loc.value === -1) {
loc.value = index;
} else {
// Locations can be marked redundantly, but their values cannot change
// once set the first time.
_assert["default"].strictEqual(loc.value, index);
}
this.marked[index] = true;
return loc;
};
Ep.emit = function (node) {
var t = util.getTypes();
if (t.isExpression(node)) {
node = t.expressionStatement(node);
}
t.assertStatement(node);
this.listing.push(node);
}; // Shorthand for emitting assignment statements. This will come in handy
// for assignments to temporary variables.
Ep.emitAssign = function (lhs, rhs) {
this.emit(this.assign(lhs, rhs));
return lhs;
}; // Shorthand for an assignment statement.
Ep.assign = function (lhs, rhs) {
var t = util.getTypes();
return t.expressionStatement(t.assignmentExpression("=", t.cloneDeep(lhs), rhs));
}; // Convenience function for generating expressions like context.next,
// context.sent, and context.rval.
Ep.contextProperty = function (name, computed) {
var t = util.getTypes();
return t.memberExpression(this.getContextId(), computed ? t.stringLiteral(name) : t.identifier(name), !!computed);
}; // Shorthand for setting context.rval and jumping to `context.stop()`.
Ep.stop = function (rval) {
if (rval) {
this.setReturnValue(rval);
}
this.jump(this.finalLoc);
};
Ep.setReturnValue = function (valuePath) {
util.getTypes().assertExpression(valuePath.value);
this.emitAssign(this.contextProperty("rval"), this.explodeExpression(valuePath));
};
Ep.clearPendingException = function (tryLoc, assignee) {
var t = util.getTypes();
t.assertLiteral(tryLoc);
var catchCall = t.callExpression(this.contextProperty("catch", true), [t.clone(tryLoc)]);
if (assignee) {
this.emitAssign(assignee, catchCall);
} else {
this.emit(catchCall);
}
}; // Emits code for an unconditional jump to the given location, even if the
// exact value of the location is not yet known.
Ep.jump = function (toLoc) {
this.emitAssign(this.contextProperty("next"), toLoc);
this.emit(util.getTypes().breakStatement());
}; // Conditional jump.
Ep.jumpIf = function (test, toLoc) {
var t = util.getTypes();
t.assertExpression(test);
t.assertLiteral(toLoc);
this.emit(t.ifStatement(test, t.blockStatement([this.assign(this.contextProperty("next"), toLoc), t.breakStatement()])));
}; // Conditional jump, with the condition negated.
Ep.jumpIfNot = function (test, toLoc) {
var t = util.getTypes();
t.assertExpression(test);
t.assertLiteral(toLoc);
var negatedTest;
if (t.isUnaryExpression(test) && test.operator === "!") {
// Avoid double negation.
negatedTest = test.argument;
} else {
negatedTest = t.unaryExpression("!", test);
}
this.emit(t.ifStatement(negatedTest, t.blockStatement([this.assign(this.contextProperty("next"), toLoc), t.breakStatement()])));
}; // Returns a unique MemberExpression that can be used to store and
// retrieve temporary values. Since the object of the member expression is
// the context object, which is presumed to coexist peacefully with all
// other local variables, and since we just increment `nextTempId`
// monotonically, uniqueness is assured.
Ep.makeTempVar = function () {
return this.contextProperty("t" + this.nextTempId++);
};
Ep.getContextFunction = function (id) {
var t = util.getTypes();
return t.functionExpression(id || null
/*Anonymous*/
, [this.getContextId()], t.blockStatement([this.getDispatchLoop()]), false, // Not a generator anymore!
false // Nor an expression.
);
}; // Turns this.listing into a loop of the form
//
// while (1) switch (context.next) {
// case 0:
// ...
// case n:
// return context.stop();
// }
//
// Each marked location in this.listing will correspond to one generated
// case statement.
Ep.getDispatchLoop = function () {
var self = this;
var t = util.getTypes();
var cases = [];
var current; // If we encounter a break, continue, or return statement in a switch
// case, we can skip the rest of the statements until the next case.
var alreadyEnded = false;
self.listing.forEach(function (stmt, i) {
if (self.marked.hasOwnProperty(i)) {
cases.push(t.switchCase(t.numericLiteral(i), current = []));
alreadyEnded = false;
}
if (!alreadyEnded) {
current.push(stmt);
if (t.isCompletionStatement(stmt)) alreadyEnded = true;
}
}); // Now that we know how many statements there will be in this.listing,
// we can finally resolve this.finalLoc.value.
this.finalLoc.value = this.listing.length;
cases.push(t.switchCase(this.finalLoc, [// Intentionally fall through to the "end" case...
]), // So that the runtime can jump to the final location without having
// to know its offset, we provide the "end" case as a synonym.
t.switchCase(t.stringLiteral("end"), [// This will check/clear both context.thrown and context.rval.
t.returnStatement(t.callExpression(this.contextProperty("stop"), []))]));
return t.whileStatement(t.numericLiteral(1), t.switchStatement(t.assignmentExpression("=", this.contextProperty("prev"), this.contextProperty("next")), cases));
};
Ep.getTryLocsList = function () {
if (this.tryEntries.length === 0) {
// To avoid adding a needless [] to the majority of runtime.wrap
// argument lists, force the caller to handle this case specially.
return null;
}
var t = util.getTypes();
var lastLocValue = 0;
return t.arrayExpression(this.tryEntries.map(function (tryEntry) {
var thisLocValue = tryEntry.firstLoc.value;
_assert["default"].ok(thisLocValue >= lastLocValue, "try entries out of order");
lastLocValue = thisLocValue;
var ce = tryEntry.catchEntry;
var fe = tryEntry.finallyEntry;
var locs = [tryEntry.firstLoc, // The null here makes a hole in the array.
ce ? ce.firstLoc : null];
if (fe) {
locs[2] = fe.firstLoc;
locs[3] = fe.afterLoc;
}
return t.arrayExpression(locs.map(function (loc) {
return loc && t.clone(loc);
}));
}));
}; // All side effects must be realized in order.
// If any subexpression harbors a leap, all subexpressions must be
// neutered of side effects.
// No destructive modification of AST nodes.
Ep.explode = function (path, ignoreResult) {
var t = util.getTypes();
var node = path.node;
var self = this;
t.assertNode(node);
if (t.isDeclaration(node)) throw getDeclError(node);
if (t.isStatement(node)) return self.explodeStatement(path);
if (t.isExpression(node)) return self.explodeExpression(path, ignoreResult);
switch (node.type) {
case "Program":
return path.get("body").map(self.explodeStatement, self);
case "VariableDeclarator":
throw getDeclError(node);
// These node types should be handled by their parent nodes
// (ObjectExpression, SwitchStatement, and TryStatement, respectively).
case "Property":
case "SwitchCase":
case "CatchClause":
throw new Error(node.type + " nodes should be handled by their parents");
default:
throw new Error("unknown Node of type " + JSON.stringify(node.type));
}
};
function getDeclError(node) {
return new Error("all declarations should have been transformed into " + "assignments before the Exploder began its work: " + JSON.stringify(node));
}
Ep.explodeStatement = function (path, labelId) {
var t = util.getTypes();
var stmt = path.node;
var self = this;
var before, after, head;
t.assertStatement(stmt);
if (labelId) {
t.assertIdentifier(labelId);
} else {
labelId = null;
} // Explode BlockStatement nodes even if they do not contain a yield,
// because we don't want or need the curly braces.
if (t.isBlockStatement(stmt)) {
path.get("body").forEach(function (path) {
self.explodeStatement(path);
});
return;
}
if (!meta.containsLeap(stmt)) {
// Technically we should be able to avoid emitting the statement
// altogether if !meta.hasSideEffects(stmt), but that leads to
// confusing generated code (for instance, `while (true) {}` just
// disappears) and is probably a more appropriate job for a dedicated
// dead code elimination pass.
self.emit(stmt);
return;
}
switch (stmt.type) {
case "ExpressionStatement":
self.explodeExpression(path.get("expression"), true);
break;
case "LabeledStatement":
after = this.loc(); // Did you know you can break from any labeled block statement or
// control structure? Well, you can! Note: when a labeled loop is
// encountered, the leap.LabeledEntry created here will immediately
// enclose a leap.LoopEntry on the leap manager's stack, and both
// entries will have the same label. Though this works just fine, it
// may seem a bit redundant. In theory, we could check here to
// determine if stmt knows how to handle its own label; for example,
// stmt happens to be a WhileStatement and so we know it's going to
// establish its own LoopEntry when we explode it (below). Then this
// LabeledEntry would be unnecessary. Alternatively, we might be
// tempted not to pass stmt.label down into self.explodeStatement,
// because we've handled the label here, but that's a mistake because
// labeled loops may contain labeled continue statements, which is not
// something we can handle in this generic case. All in all, I think a
// little redundancy greatly simplifies the logic of this case, since
// it's clear that we handle all possible LabeledStatements correctly
// here, regardless of whether they interact with the leap manager
// themselves. Also remember that labels and break/continue-to-label
// statements are rare, and all of this logic happens at transform
// time, so it has no additional runtime cost.
self.leapManager.withEntry(new leap.LabeledEntry(after, stmt.label), function () {
self.explodeStatement(path.get("body"), stmt.label);
});
self.mark(after);
break;
case "WhileStatement":
before = this.loc();
after = this.loc();
self.mark(before);
self.jumpIfNot(self.explodeExpression(path.get("test")), after);
self.leapManager.withEntry(new leap.LoopEntry(after, before, labelId), function () {
self.explodeStatement(path.get("body"));
});
self.jump(before);
self.mark(after);
break;
case "DoWhileStatement":
var first = this.loc();
var test = this.loc();
after = this.loc();
self.mark(first);
self.leapManager.withEntry(new leap.LoopEntry(after, test, labelId), function () {
self.explode(path.get("body"));
});
self.mark(test);
self.jumpIf(self.explodeExpression(path.get("test")), first);
self.mark(after);
break;
case "ForStatement":
head = this.loc();
var update = this.loc();
after = this.loc();
if (stmt.init) {
// We pass true here to indicate that if stmt.init is an expression
// then we do not care about its result.
self.explode(path.get("init"), true);
}
self.mark(head);
if (stmt.test) {
self.jumpIfNot(self.explodeExpression(path.get("test")), after);
} else {// No test means continue unconditionally.
}
self.leapManager.withEntry(new leap.LoopEntry(after, update, labelId), function () {
self.explodeStatement(path.get("body"));
});
self.mark(update);
if (stmt.update) {
// We pass true here to indicate that if stmt.update is an
// expression then we do not care about its result.
self.explode(path.get("update"), true);
}
self.jump(head);
self.mark(after);
break;
case "TypeCastExpression":
return self.explodeExpression(path.get("expression"));
case "ForInStatement":
head = this.loc();
after = this.loc();
var keyIterNextFn = self.makeTempVar();
self.emitAssign(keyIterNextFn, t.callExpression(util.runtimeProperty("keys"), [self.explodeExpression(path.get("right"))]));
self.mark(head);
var keyInfoTmpVar = self.makeTempVar();
self.jumpIf(t.memberExpression(t.assignmentExpression("=", keyInfoTmpVar, t.callExpression(t.cloneDeep(keyIterNextFn), [])), t.identifier("done"), false), after);
self.emitAssign(stmt.left, t.memberExpression(t.cloneDeep(keyInfoTmpVar), t.identifier("value"), false));
self.leapManager.withEntry(new leap.LoopEntry(after, head, labelId), function () {
self.explodeStatement(path.get("body"));
});
self.jump(head);
self.mark(after);
break;
case "BreakStatement":
self.emitAbruptCompletion({
type: "break",
target: self.leapManager.getBreakLoc(stmt.label)
});
break;
case "ContinueStatement":
self.emitAbruptCompletion({
type: "continue",
target: self.leapManager.getContinueLoc(stmt.label)
});
break;
case "SwitchStatement":
// Always save the discriminant into a temporary variable in case the
// test expressions overwrite values like context.sent.
var disc = self.emitAssign(self.makeTempVar(), self.explodeExpression(path.get("discriminant")));
after = this.loc();
var defaultLoc = this.loc();
var condition = defaultLoc;
var caseLocs = []; // If there are no cases, .cases might be undefined.
var cases = stmt.cases || [];
for (var i = cases.length - 1; i >= 0; --i) {
var c = cases[i];
t.assertSwitchCase(c);
if (c.test) {
condition = t.conditionalExpression(t.binaryExpression("===", t.cloneDeep(disc), c.test), caseLocs[i] = this.loc(), condition);
} else {
caseLocs[i] = defaultLoc;
}
}
var discriminant = path.get("discriminant");
util.replaceWithOrRemove(discriminant, condition);
self.jump(self.explodeExpression(discriminant));
self.leapManager.withEntry(new leap.SwitchEntry(after), function () {
path.get("cases").forEach(function (casePath) {
var i = casePath.key;
self.mark(caseLocs[i]);
casePath.get("consequent").forEach(function (path) {
self.explodeStatement(path);
});
});
});
self.mark(after);
if (defaultLoc.value === -1) {
self.mark(defaultLoc);
_assert["default"].strictEqual(after.value, defaultLoc.value);
}
break;
case "IfStatement":
var elseLoc = stmt.alternate && this.loc();
after = this.loc();
self.jumpIfNot(self.explodeExpression(path.get("test")), elseLoc || after);
self.explodeStatement(path.get("consequent"));
if (elseLoc) {
self.jump(after);
self.mark(elseLoc);
self.explodeStatement(path.get("alternate"));
}
self.mark(after);
break;
case "ReturnStatement":
self.emitAbruptCompletion({
type: "return",
value: self.explodeExpression(path.get("argument"))
});
break;
case "WithStatement":
throw new Error("WithStatement not supported in generator functions.");
case "TryStatement":
after = this.loc();
var handler = stmt.handler;
var catchLoc = handler && this.loc();
var catchEntry = catchLoc && new leap.CatchEntry(catchLoc, handler.param);
var finallyLoc = stmt.finalizer && this.loc();
var finallyEntry = finallyLoc && new leap.FinallyEntry(finallyLoc, after);
var tryEntry = new leap.TryEntry(self.getUnmarkedCurrentLoc(), catchEntry, finallyEntry);
self.tryEntries.push(tryEntry);
self.updateContextPrevLoc(tryEntry.firstLoc);
self.leapManager.withEntry(tryEntry, function () {
self.explodeStatement(path.get("block"));
if (catchLoc) {
if (finallyLoc) {
// If we have both a catch block and a finally block, then
// because we emit the catch block first, we need to jump over
// it to the finally block.
self.jump(finallyLoc);
} else {
// If there is no finally block, then we need to jump over the
// catch block to the fall-through location.
self.jump(after);
}
self.updateContextPrevLoc(self.mark(catchLoc));
var bodyPath = path.get("handler.body");
var safeParam = self.makeTempVar();
self.clearPendingException(tryEntry.firstLoc, safeParam);
bodyPath.traverse(catchParamVisitor, {
getSafeParam: function getSafeParam() {
return t.cloneDeep(safeParam);
},
catchParamName: handler.param.name
});
self.leapManager.withEntry(catchEntry, function () {
self.explodeStatement(bodyPath);
});
}
if (finallyLoc) {
self.updateContextPrevLoc(self.mark(finallyLoc));
self.leapManager.withEntry(finallyEntry, function () {
self.explodeStatement(path.get("finalizer"));
});
self.emit(t.returnStatement(t.callExpression(self.contextProperty("finish"), [finallyEntry.firstLoc])));
}
});
self.mark(after);
break;
case "ThrowStatement":
self.emit(t.throwStatement(self.explodeExpression(path.get("argument"))));
break;
default:
throw new Error("unknown Statement of type " + JSON.stringify(stmt.type));
}
};
var catchParamVisitor = {
Identifier: function Identifier(path, state) {
if (path.node.name === state.catchParamName && util.isReference(path)) {
util.replaceWithOrRemove(path, state.getSafeParam());
}
},
Scope: function Scope(path, state) {
if (path.scope.hasOwnBinding(state.catchParamName)) {
// Don't descend into nested scopes that shadow the catch
// parameter with their own declarations.
path.skip();
}
}
};
Ep.emitAbruptCompletion = function (record) {
if (!isValidCompletion(record)) {
_assert["default"].ok(false, "invalid completion record: " + JSON.stringify(record));
}
_assert["default"].notStrictEqual(record.type, "normal", "normal completions are not abrupt");
var t = util.getTypes();
var abruptArgs = [t.stringLiteral(record.type)];
if (record.type === "break" || record.type === "continue") {
t.assertLiteral(record.target);
abruptArgs[1] = this.insertedLocs.has(record.target) ? record.target : t.cloneDeep(record.target);
} else if (record.type === "return" || record.type === "throw") {
if (record.value) {
t.assertExpression(record.value);
abruptArgs[1] = this.insertedLocs.has(record.value) ? record.value : t.cloneDeep(record.value);
}
}
this.emit(t.returnStatement(t.callExpression(this.contextProperty("abrupt"), abruptArgs)));
};
function isValidCompletion(record) {
var type = record.type;
if (type === "normal") {
return !hasOwn.call(record, "target");
}
if (type === "break" || type === "continue") {
return !hasOwn.call(record, "value") && util.getTypes().isLiteral(record.target);
}
if (type === "return" || type === "throw") {
return hasOwn.call(record, "value") && !hasOwn.call(record, "target");
}
return false;
} // Not all offsets into emitter.listing are potential jump targets. For
// example, execution typically falls into the beginning of a try block
// without jumping directly there. This method returns the current offset
// without marking it, so that a switch case will not necessarily be
// generated for this offset (I say "not necessarily" because the same
// location might end up being marked in the process of emitting other
// statements). There's no logical harm in marking such locations as jump
// targets, but minimizing the number of switch cases keeps the generated
// code shorter.
Ep.getUnmarkedCurrentLoc = function () {
return util.getTypes().numericLiteral(this.listing.length);
}; // The context.prev property takes the value of context.next whenever we
// evaluate the switch statement discriminant, which is generally good
// enough for tracking the last location we jumped to, but sometimes
// context.prev needs to be more precise, such as when we fall
// successfully out of a try block and into a finally block without
// jumping. This method exists to update context.prev to the freshest
// available location. If we were implementing a full interpreter, we
// would know the location of the current instruction with complete
// precision at all times, but we don't have that luxury here, as it would
// be costly and verbose to set context.prev before every statement.
Ep.updateContextPrevLoc = function (loc) {
var t = util.getTypes();
if (loc) {
t.assertLiteral(loc);
if (loc.value === -1) {
// If an uninitialized location literal was passed in, set its value
// to the current this.listing.length.
loc.value = this.listing.length;
} else {
// Otherwise assert that the location matches the current offset.
_assert["default"].strictEqual(loc.value, this.listing.length);
}
} else {
loc = this.getUnmarkedCurrentLoc();
} // Make sure context.prev is up to date in case we fell into this try
// statement without jumping to it. TODO Consider avoiding this
// assignment when we know control must have jumped here.
this.emitAssign(this.contextProperty("prev"), loc);
};
Ep.explodeExpression = function (path, ignoreResult) {
var t = util.getTypes();
var expr = path.node;
if (expr) {
t.assertExpression(expr);
} else {
return expr;
}
var self = this;
var result; // Used optionally by several cases below.
var after;
function finish(expr) {
t.assertExpression(expr);
if (ignoreResult) {
self.emit(expr);
} else {
return expr;
}
} // If the expression does not contain a leap, then we either emit the
// expression as a standalone statement or return it whole.
if (!meta.containsLeap(expr)) {
return finish(expr);
} // If any child contains a leap (such as a yield or labeled continue or
// break statement), then any sibling subexpressions will almost
// certainly have to be exploded in order to maintain the order of their
// side effects relative to the leaping child(ren).
var hasLeapingChildren = meta.containsLeap.onlyChildren(expr); // In order to save the rest of explodeExpression from a combinatorial
// trainwreck of special cases, explodeViaTempVar is responsible for
// deciding when a subexpression needs to be "exploded," which is my
// very technical term for emitting the subexpression as an assignment
// to a temporary variable and the substituting the temporary variable
// for the original subexpression. Think of exploded view diagrams, not
// Michael Bay movies. The point of exploding subexpressions is to
// control the precise order in which the generated code realizes the
// side effects of those subexpressions.
function explodeViaTempVar(tempVar, childPath, ignoreChildResult) {
_assert["default"].ok(!ignoreChildResult || !tempVar, "Ignoring the result of a child expression but forcing it to " + "be assigned to a temporary variable?");
var result = self.explodeExpression(childPath, ignoreChildResult);
if (ignoreChildResult) {// Side effects already emitted above.
} else if (tempVar || hasLeapingChildren && !t.isLiteral(result)) {
// If tempVar was provided, then the result will always be assigned
// to it, even if the result does not otherwise need to be assigned
// to a temporary variable. When no tempVar is provided, we have
// the flexibility to decide whether a temporary variable is really
// necessary. Unfortunately, in general, a temporary variable is
// required whenever any child contains a yield expression, since it
// is difficult to prove (at all, let alone efficiently) whether
// this result would evaluate to the same value before and after the
// yield (see #206). One narrow case where we can prove it doesn't
// matter (and thus we do not need a temporary variable) is when the
// result in question is a Literal value.
result = self.emitAssign(tempVar || self.makeTempVar(), result);
}
return result;
} // If ignoreResult is true, then we must take full responsibility for
// emitting the expression with all its side effects, and we should not
// return a result.
switch (expr.type) {
case "MemberExpression":
return finish(t.memberExpression(self.explodeExpression(path.get("object")), expr.computed ? explodeViaTempVar(null, path.get("property")) : expr.property, expr.computed));
case "CallExpression":
var calleePath = path.get("callee");
var argsPath = path.get("arguments");
var newCallee;
var newArgs;
var hasLeapingArgs = argsPath.some(function (argPath) {
return meta.containsLeap(argPath.node);
});
var injectFirstArg = null;
if (t.isMemberExpression(calleePath.node)) {
if (hasLeapingArgs) {
// If the arguments of the CallExpression contained any yield
// expressions, then we need to be sure to evaluate the callee
// before evaluating the arguments, but if the callee was a member
// expression, then we must be careful that the object of the
// member expression still gets bound to `this` for the call.
var newObject = explodeViaTempVar( // Assign the exploded callee.object expression to a temporary
// variable so that we can use it twice without reevaluating it.
self.makeTempVar(), calleePath.get("object"));
var newProperty = calleePath.node.computed ? explodeViaTempVar(null, calleePath.get("property")) : calleePath.node.property;
injectFirstArg = newObject;
newCallee = t.memberExpression(t.memberExpression(t.cloneDeep(newObject), newProperty, calleePath.node.computed), t.identifier("call"), false);
} else {
newCallee = self.explodeExpression(calleePath);
}
} else {
newCallee = explodeViaTempVar(null, calleePath);
if (t.isMemberExpression(newCallee)) {
// If the callee was not previously a MemberExpression, then the
// CallExpression was "unqualified," meaning its `this` object
// should be the global object. If the exploded expression has
// become a MemberExpression (e.g. a context property, probably a
// temporary variable), then we need to force it to be unqualified
// by using the (0, object.property)(...) trick; otherwise, it
// will receive the object of the MemberExpression as its `this`
// object.
newCallee = t.sequenceExpression([t.numericLiteral(0), t.cloneDeep(newCallee)]);
}
}
if (hasLeapingArgs) {
newArgs = argsPath.map(function (argPath) {
return explodeViaTempVar(null, argPath);
});
if (injectFirstArg) newArgs.unshift(injectFirstArg);
newArgs = newArgs.map(function (arg) {
return t.cloneDeep(arg);
});
} else {
newArgs = path.node.arguments;
}
return finish(t.callExpression(newCallee, newArgs));
case "NewExpression":
return finish(t.newExpression(explodeViaTempVar(null, path.get("callee")), path.get("arguments").map(function (argPath) {
return explodeViaTempVar(null, argPath);
})));
case "ObjectExpression":
return finish(t.objectExpression(path.get("properties").map(function (propPath) {
if (propPath.isObjectProperty()) {
return t.objectProperty(propPath.node.key, explodeViaTempVar(null, propPath.get("value")), propPath.node.computed);
} else {
return propPath.node;
}
})));
case "ArrayExpression":
return finish(t.arrayExpression(path.get("elements").map(function (elemPath) {
if (elemPath.isSpreadElement()) {
return t.spreadElement(explodeViaTempVar(null, elemPath.get("argument")));
} else {
return explodeViaTempVar(null, elemPath);
}
})));
case "SequenceExpression":
var lastIndex = expr.expressions.length - 1;
path.get("expressions").forEach(function (exprPath) {
if (exprPath.key === lastIndex) {
result = self.explodeExpression(exprPath, ignoreResult);
} else {
self.explodeExpression(exprPath, true);
}
});
return result;
case "LogicalExpression":
after = this.loc();
if (!ignoreResult) {
result = self.makeTempVar();
}
var left = explodeViaTempVar(result, path.get("left"));
if (expr.operator === "&&") {
self.jumpIfNot(left, after);
} else {
_assert["default"].strictEqual(expr.operator, "||");
self.jumpIf(left, after);
}
explodeViaTempVar(result, path.get("right"), ignoreResult);
self.mark(after);
return result;
case "ConditionalExpression":
var elseLoc = this.loc();
after = this.loc();
var test = self.explodeExpression(path.get("test"));
self.jumpIfNot(test, elseLoc);
if (!ignoreResult) {
result = self.makeTempVar();
}
explodeViaTempVar(result, path.get("consequent"), ignoreResult);
self.jump(after);
self.mark(elseLoc);
explodeViaTempVar(result, path.get("alternate"), ignoreResult);
self.mark(after);
return result;
case "UnaryExpression":
return finish(t.unaryExpression(expr.operator, // Can't (and don't need to) break up the syntax of the argument.
// Think about delete a[b].
self.explodeExpression(path.get("argument")), !!expr.prefix));
case "BinaryExpression":
return finish(t.binaryExpression(expr.operator, explodeViaTempVar(null, path.get("left")), explodeViaTempVar(null, path.get("right"))));
case "AssignmentExpression":
if (expr.operator === "=") {
// If this is a simple assignment, the left hand side does not need
// to be read before the right hand side is evaluated, so we can
// avoid the more complicated logic below.
return finish(t.assignmentExpression(expr.operator, self.explodeExpression(path.get("left")), self.explodeExpression(path.get("right"))));
}
var lhs = self.explodeExpression(path.get("left"));
var temp = self.emitAssign(self.makeTempVar(), lhs); // For example,
//
// x += yield y
//
// becomes
//
// context.t0 = x
// x = context.t0 += yield y
//
// so that the left-hand side expression is read before the yield.
// Fixes https://github.com/facebook/regenerator/issues/345.
return finish(t.assignmentExpression("=", t.cloneDeep(lhs), t.assignmentExpression(expr.operator, t.cloneDeep(temp), self.explodeExpression(path.get("right")))));
case "UpdateExpression":
return finish(t.updateExpression(expr.operator, self.explodeExpression(path.get("argument")), expr.prefix));
case "YieldExpression":
after = this.loc();
var arg = expr.argument && self.explodeExpression(path.get("argument"));
if (arg && expr.delegate) {
var _result = self.makeTempVar();
var _ret = t.returnStatement(t.callExpression(self.contextProperty("delegateYield"), [arg, t.stringLiteral(_result.property.name), after]));
_ret.loc = expr.loc;
self.emit(_ret);
self.mark(after);
return _result;
}
self.emitAssign(self.contextProperty("next"), after);
var ret = t.returnStatement(t.cloneDeep(arg) || null); // Preserve the `yield` location so that source mappings for the statements
// link back to the yield properly.
ret.loc = expr.loc;
self.emit(ret);
self.mark(after);
return self.contextProperty("sent");
default:
throw new Error("unknown Expression of type " + JSON.stringify(expr.type));
}
};

136
web/node_modules/regenerator-transform/lib/hoist.js generated vendored Normal file
View file

@ -0,0 +1,136 @@
"use strict";
var _interopRequireWildcard = require("@babel/runtime/helpers/interopRequireWildcard");
var util = _interopRequireWildcard(require("./util"));
/**
* Copyright (c) 2014-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
var hasOwn = Object.prototype.hasOwnProperty; // The hoist function takes a FunctionExpression or FunctionDeclaration
// and replaces any Declaration nodes in its body with assignments, then
// returns a VariableDeclaration containing just the names of the removed
// declarations.
exports.hoist = function (funPath) {
var t = util.getTypes();
t.assertFunction(funPath.node);
var vars = {};
function varDeclToExpr(_ref, includeIdentifiers) {
var vdec = _ref.node,
scope = _ref.scope;
t.assertVariableDeclaration(vdec); // TODO assert.equal(vdec.kind, "var");
var exprs = [];
vdec.declarations.forEach(function (dec) {
// Note: We duplicate 'dec.id' here to ensure that the variable declaration IDs don't
// have the same 'loc' value, since that can make sourcemaps and retainLines behave poorly.
vars[dec.id.name] = t.identifier(dec.id.name); // Remove the binding, to avoid "duplicate declaration" errors when it will
// be injected again.
scope.removeBinding(dec.id.name);
if (dec.init) {
exprs.push(t.assignmentExpression("=", dec.id, dec.init));
} else if (includeIdentifiers) {
exprs.push(dec.id);
}
});
if (exprs.length === 0) return null;
if (exprs.length === 1) return exprs[0];
return t.sequenceExpression(exprs);
}
funPath.get("body").traverse({
VariableDeclaration: {
exit: function exit(path) {
var expr = varDeclToExpr(path, false);
if (expr === null) {
path.remove();
} else {
// We don't need to traverse this expression any further because
// there can't be any new declarations inside an expression.
util.replaceWithOrRemove(path, t.expressionStatement(expr));
} // Since the original node has been either removed or replaced,
// avoid traversing it any further.
path.skip();
}
},
ForStatement: function ForStatement(path) {
var init = path.get("init");
if (init.isVariableDeclaration()) {
util.replaceWithOrRemove(init, varDeclToExpr(init, false));
}
},
ForXStatement: function ForXStatement(path) {
var left = path.get("left");
if (left.isVariableDeclaration()) {
util.replaceWithOrRemove(left, varDeclToExpr(left, true));
}
},
FunctionDeclaration: function FunctionDeclaration(path) {
var node = path.node;
vars[node.id.name] = node.id;
var assignment = t.expressionStatement(t.assignmentExpression("=", t.clone(node.id), t.functionExpression(path.scope.generateUidIdentifierBasedOnNode(node), node.params, node.body, node.generator, node.expression)));
if (path.parentPath.isBlockStatement()) {
// Insert the assignment form before the first statement in the
// enclosing block.
path.parentPath.unshiftContainer("body", assignment); // Remove the function declaration now that we've inserted the
// equivalent assignment form at the beginning of the block.
path.remove();
} else {
// If the parent node is not a block statement, then we can just
// replace the declaration with the equivalent assignment form
// without worrying about hoisting it.
util.replaceWithOrRemove(path, assignment);
} // Remove the binding, to avoid "duplicate declaration" errors when it will
// be injected again.
path.scope.removeBinding(node.id.name); // Don't hoist variables out of inner functions.
path.skip();
},
FunctionExpression: function FunctionExpression(path) {
// Don't descend into nested function expressions.
path.skip();
},
ArrowFunctionExpression: function ArrowFunctionExpression(path) {
// Don't descend into nested function expressions.
path.skip();
}
});
var paramNames = {};
funPath.get("params").forEach(function (paramPath) {
var param = paramPath.node;
if (t.isIdentifier(param)) {
paramNames[param.name] = param;
} else {// Variables declared by destructuring parameter patterns will be
// harmlessly re-declared.
}
});
var declarations = [];
Object.keys(vars).forEach(function (name) {
if (!hasOwn.call(paramNames, name)) {
declarations.push(t.variableDeclarator(vars[name], null));
}
});
if (declarations.length === 0) {
return null; // Be sure to handle this case!
}
return t.variableDeclaration("var", declarations);
};

29
web/node_modules/regenerator-transform/lib/index.js generated vendored Normal file
View file

@ -0,0 +1,29 @@
"use strict";
exports.__esModule = true;
exports["default"] = _default;
var _visit = require("./visit");
/**
* Copyright (c) 2014-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
function _default(context) {
var plugin = {
visitor: (0, _visit.getVisitor)(context)
}; // Some presets manually call child presets, but fail to pass along the
// context object. Out of an abundance of caution, we verify that it
// exists first to avoid causing unnecessary breaking changes.
var version = context && context.version; // The "name" property is not allowed in older versions of Babel (6.x)
// and will cause the plugin validator to throw an exception.
if (version && parseInt(version, 10) >= 7) {
plugin.name = "regenerator-transform";
}
return plugin;
}

178
web/node_modules/regenerator-transform/lib/leap.js generated vendored Normal file
View file

@ -0,0 +1,178 @@
"use strict";
var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault");
var _assert = _interopRequireDefault(require("assert"));
var _emit = require("./emit");
var _util = require("util");
var _util2 = require("./util");
/**
* Copyright (c) 2014-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
function Entry() {
_assert["default"].ok(this instanceof Entry);
}
function FunctionEntry(returnLoc) {
Entry.call(this);
(0, _util2.getTypes)().assertLiteral(returnLoc);
this.returnLoc = returnLoc;
}
(0, _util.inherits)(FunctionEntry, Entry);
exports.FunctionEntry = FunctionEntry;
function LoopEntry(breakLoc, continueLoc, label) {
Entry.call(this);
var t = (0, _util2.getTypes)();
t.assertLiteral(breakLoc);
t.assertLiteral(continueLoc);
if (label) {
t.assertIdentifier(label);
} else {
label = null;
}
this.breakLoc = breakLoc;
this.continueLoc = continueLoc;
this.label = label;
}
(0, _util.inherits)(LoopEntry, Entry);
exports.LoopEntry = LoopEntry;
function SwitchEntry(breakLoc) {
Entry.call(this);
(0, _util2.getTypes)().assertLiteral(breakLoc);
this.breakLoc = breakLoc;
}
(0, _util.inherits)(SwitchEntry, Entry);
exports.SwitchEntry = SwitchEntry;
function TryEntry(firstLoc, catchEntry, finallyEntry) {
Entry.call(this);
var t = (0, _util2.getTypes)();
t.assertLiteral(firstLoc);
if (catchEntry) {
_assert["default"].ok(catchEntry instanceof CatchEntry);
} else {
catchEntry = null;
}
if (finallyEntry) {
_assert["default"].ok(finallyEntry instanceof FinallyEntry);
} else {
finallyEntry = null;
} // Have to have one or the other (or both).
_assert["default"].ok(catchEntry || finallyEntry);
this.firstLoc = firstLoc;
this.catchEntry = catchEntry;
this.finallyEntry = finallyEntry;
}
(0, _util.inherits)(TryEntry, Entry);
exports.TryEntry = TryEntry;
function CatchEntry(firstLoc, paramId) {
Entry.call(this);
var t = (0, _util2.getTypes)();
t.assertLiteral(firstLoc);
t.assertIdentifier(paramId);
this.firstLoc = firstLoc;
this.paramId = paramId;
}
(0, _util.inherits)(CatchEntry, Entry);
exports.CatchEntry = CatchEntry;
function FinallyEntry(firstLoc, afterLoc) {
Entry.call(this);
var t = (0, _util2.getTypes)();
t.assertLiteral(firstLoc);
t.assertLiteral(afterLoc);
this.firstLoc = firstLoc;
this.afterLoc = afterLoc;
}
(0, _util.inherits)(FinallyEntry, Entry);
exports.FinallyEntry = FinallyEntry;
function LabeledEntry(breakLoc, label) {
Entry.call(this);
var t = (0, _util2.getTypes)();
t.assertLiteral(breakLoc);
t.assertIdentifier(label);
this.breakLoc = breakLoc;
this.label = label;
}
(0, _util.inherits)(LabeledEntry, Entry);
exports.LabeledEntry = LabeledEntry;
function LeapManager(emitter) {
_assert["default"].ok(this instanceof LeapManager);
_assert["default"].ok(emitter instanceof _emit.Emitter);
this.emitter = emitter;
this.entryStack = [new FunctionEntry(emitter.finalLoc)];
}
var LMp = LeapManager.prototype;
exports.LeapManager = LeapManager;
LMp.withEntry = function (entry, callback) {
_assert["default"].ok(entry instanceof Entry);
this.entryStack.push(entry);
try {
callback.call(this.emitter);
} finally {
var popped = this.entryStack.pop();
_assert["default"].strictEqual(popped, entry);
}
};
LMp._findLeapLocation = function (property, label) {
for (var i = this.entryStack.length - 1; i >= 0; --i) {
var entry = this.entryStack[i];
var loc = entry[property];
if (loc) {
if (label) {
if (entry.label && entry.label.name === label.name) {
return loc;
}
} else if (entry instanceof LabeledEntry) {// Ignore LabeledEntry entries unless we are actually breaking to
// a label.
} else {
return loc;
}
}
}
return null;
};
LMp.getBreakLoc = function (label) {
return this._findLeapLocation("breakLoc", label);
};
LMp.getContinueLoc = function (label) {
return this._findLeapLocation("continueLoc", label);
};

113
web/node_modules/regenerator-transform/lib/meta.js generated vendored Normal file
View file

@ -0,0 +1,113 @@
"use strict";
var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault");
var _assert = _interopRequireDefault(require("assert"));
var _util = require("./util.js");
/**
* Copyright (c) 2014-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
var mMap = new WeakMap();
function m(node) {
if (!mMap.has(node)) {
mMap.set(node, {});
}
return mMap.get(node);
}
var hasOwn = Object.prototype.hasOwnProperty;
function makePredicate(propertyName, knownTypes) {
function onlyChildren(node) {
var t = (0, _util.getTypes)();
t.assertNode(node); // Assume no side effects until we find out otherwise.
var result = false;
function check(child) {
if (result) {// Do nothing.
} else if (Array.isArray(child)) {
child.some(check);
} else if (t.isNode(child)) {
_assert["default"].strictEqual(result, false);
result = predicate(child);
}
return result;
}
var keys = t.VISITOR_KEYS[node.type];
if (keys) {
for (var i = 0; i < keys.length; i++) {
var key = keys[i];
var child = node[key];
check(child);
}
}
return result;
}
function predicate(node) {
(0, _util.getTypes)().assertNode(node);
var meta = m(node);
if (hasOwn.call(meta, propertyName)) return meta[propertyName]; // Certain types are "opaque," which means they have no side
// effects or leaps and we don't care about their subexpressions.
if (hasOwn.call(opaqueTypes, node.type)) return meta[propertyName] = false;
if (hasOwn.call(knownTypes, node.type)) return meta[propertyName] = true;
return meta[propertyName] = onlyChildren(node);
}
predicate.onlyChildren = onlyChildren;
return predicate;
}
var opaqueTypes = {
FunctionExpression: true,
ArrowFunctionExpression: true
}; // These types potentially have side effects regardless of what side
// effects their subexpressions have.
var sideEffectTypes = {
CallExpression: true,
// Anything could happen!
ForInStatement: true,
// Modifies the key variable.
UnaryExpression: true,
// Think delete.
BinaryExpression: true,
// Might invoke .toString() or .valueOf().
AssignmentExpression: true,
// Side-effecting by definition.
UpdateExpression: true,
// Updates are essentially assignments.
NewExpression: true // Similar to CallExpression.
}; // These types are the direct cause of all leaps in control flow.
var leapTypes = {
YieldExpression: true,
BreakStatement: true,
ContinueStatement: true,
ReturnStatement: true,
ThrowStatement: true
}; // All leap types are also side effect types.
for (var type in leapTypes) {
if (hasOwn.call(leapTypes, type)) {
sideEffectTypes[type] = leapTypes[type];
}
}
exports.hasSideEffects = makePredicate("hasSideEffects", sideEffectTypes);
exports.containsLeap = makePredicate("containsLeap", leapTypes);

View file

@ -0,0 +1,79 @@
"use strict";
var _interopRequireWildcard = require("@babel/runtime/helpers/interopRequireWildcard");
exports.__esModule = true;
exports["default"] = replaceShorthandObjectMethod;
var util = _interopRequireWildcard(require("./util"));
/**
* Copyright (c) 2014-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// this function converts a shorthand object generator method into a normal
// (non-shorthand) object property which is a generator function expression. for
// example, this:
//
// var foo = {
// *bar(baz) { return 5; }
// }
//
// should be replaced with:
//
// var foo = {
// bar: function*(baz) { return 5; }
// }
//
// to do this, it clones the parameter array and the body of the object generator
// method into a new FunctionExpression.
//
// this method can be passed any Function AST node path, and it will return
// either:
// a) the path that was passed in (iff the path did not need to be replaced) or
// b) the path of the new FunctionExpression that was created as a replacement
// (iff the path did need to be replaced)
//
// In either case, though, the caller can count on the fact that the return value
// is a Function AST node path.
//
// If this function is called with an AST node path that is not a Function (or with an
// argument that isn't an AST node path), it will throw an error.
function replaceShorthandObjectMethod(path) {
var t = util.getTypes();
if (!path.node || !t.isFunction(path.node)) {
throw new Error("replaceShorthandObjectMethod can only be called on Function AST node paths.");
} // this function only replaces shorthand object methods (called ObjectMethod
// in Babel-speak).
if (!t.isObjectMethod(path.node)) {
return path;
} // this function only replaces generators.
if (!path.node.generator) {
return path;
}
var parameters = path.node.params.map(function (param) {
return t.cloneDeep(param);
});
var functionExpression = t.functionExpression(null, // id
parameters, // params
t.cloneDeep(path.node.body), // body
path.node.generator, path.node.async);
util.replaceWithOrRemove(path, t.objectProperty(t.cloneDeep(path.node.key), // key
functionExpression, //value
path.node.computed, // computed
false // shorthand
)); // path now refers to the ObjectProperty AST node path, but we want to return a
// Function AST node path for the function expression we created. we know that
// the FunctionExpression we just created is the value of the ObjectProperty,
// so return the "value" path off of this path.
return path.get("value");
}

56
web/node_modules/regenerator-transform/lib/util.js generated vendored Normal file
View file

@ -0,0 +1,56 @@
"use strict";
exports.__esModule = true;
exports.wrapWithTypes = wrapWithTypes;
exports.getTypes = getTypes;
exports.runtimeProperty = runtimeProperty;
exports.isReference = isReference;
exports.replaceWithOrRemove = replaceWithOrRemove;
/**
* Copyright (c) 2014-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
var currentTypes = null;
function wrapWithTypes(types, fn) {
return function () {
var oldTypes = currentTypes;
currentTypes = types;
try {
for (var _len = arguments.length, args = new Array(_len), _key = 0; _key < _len; _key++) {
args[_key] = arguments[_key];
}
return fn.apply(this, args);
} finally {
currentTypes = oldTypes;
}
};
}
function getTypes() {
return currentTypes;
}
function runtimeProperty(name) {
var t = getTypes();
return t.memberExpression(t.identifier("regeneratorRuntime"), t.identifier(name), false);
}
function isReference(path) {
return path.isReferenced() || path.parentPath.isAssignmentExpression({
left: path.node
});
}
function replaceWithOrRemove(path, replacement) {
if (replacement) {
path.replaceWith(replacement);
} else {
path.remove();
}
}

326
web/node_modules/regenerator-transform/lib/visit.js generated vendored Normal file
View file

@ -0,0 +1,326 @@
/**
* Copyright (c) 2014-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
"use strict";
var _interopRequireWildcard = require("@babel/runtime/helpers/interopRequireWildcard");
var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault");
var _assert = _interopRequireDefault(require("assert"));
var _hoist = require("./hoist");
var _emit = require("./emit");
var _replaceShorthandObjectMethod = _interopRequireDefault(require("./replaceShorthandObjectMethod"));
var util = _interopRequireWildcard(require("./util"));
exports.getVisitor = function (_ref) {
var t = _ref.types;
return {
Method: function Method(path, state) {
var node = path.node;
if (!shouldRegenerate(node, state)) return;
var container = t.functionExpression(null, [], t.cloneNode(node.body, false), node.generator, node.async);
path.get("body").set("body", [t.returnStatement(t.callExpression(container, []))]); // Regardless of whether or not the wrapped function is a an async method
// or generator the outer function should not be
node.async = false;
node.generator = false; // Unwrap the wrapper IIFE's environment so super and this and such still work.
path.get("body.body.0.argument.callee").unwrapFunctionEnvironment();
},
Function: {
exit: util.wrapWithTypes(t, function (path, state) {
var node = path.node;
if (!shouldRegenerate(node, state)) return; // if this is an ObjectMethod, we need to convert it to an ObjectProperty
path = (0, _replaceShorthandObjectMethod["default"])(path);
node = path.node;
var contextId = path.scope.generateUidIdentifier("context");
var argsId = path.scope.generateUidIdentifier("args");
path.ensureBlock();
var bodyBlockPath = path.get("body");
if (node.async) {
bodyBlockPath.traverse(awaitVisitor);
}
bodyBlockPath.traverse(functionSentVisitor, {
context: contextId
});
var outerBody = [];
var innerBody = [];
bodyBlockPath.get("body").forEach(function (childPath) {
var node = childPath.node;
if (t.isExpressionStatement(node) && t.isStringLiteral(node.expression)) {
// Babylon represents directives like "use strict" as elements
// of a bodyBlockPath.node.directives array, but they could just
// as easily be represented (by other parsers) as traditional
// string-literal-valued expression statements, so we need to
// handle that here. (#248)
outerBody.push(node);
} else if (node && node._blockHoist != null) {
outerBody.push(node);
} else {
innerBody.push(node);
}
});
if (outerBody.length > 0) {
// Only replace the inner body if we actually hoisted any statements
// to the outer body.
bodyBlockPath.node.body = innerBody;
}
var outerFnExpr = getOuterFnExpr(path); // Note that getOuterFnExpr has the side-effect of ensuring that the
// function has a name (so node.id will always be an Identifier), even
// if a temporary name has to be synthesized.
t.assertIdentifier(node.id);
var innerFnId = t.identifier(node.id.name + "$"); // Turn all declarations into vars, and replace the original
// declarations with equivalent assignment expressions.
var vars = (0, _hoist.hoist)(path);
var context = {
usesThis: false,
usesArguments: false,
getArgsId: function getArgsId() {
return t.clone(argsId);
}
};
path.traverse(argumentsThisVisitor, context);
if (context.usesArguments) {
vars = vars || t.variableDeclaration("var", []);
vars.declarations.push(t.variableDeclarator(t.clone(argsId), t.identifier("arguments")));
}
var emitter = new _emit.Emitter(contextId);
emitter.explode(path.get("body"));
if (vars && vars.declarations.length > 0) {
outerBody.push(vars);
}
var wrapArgs = [emitter.getContextFunction(innerFnId)];
var tryLocsList = emitter.getTryLocsList();
if (node.generator) {
wrapArgs.push(outerFnExpr);
} else if (context.usesThis || tryLocsList || node.async) {
// Async functions that are not generators don't care about the
// outer function because they don't need it to be marked and don't
// inherit from its .prototype.
wrapArgs.push(t.nullLiteral());
}
if (context.usesThis) {
wrapArgs.push(t.thisExpression());
} else if (tryLocsList || node.async) {
wrapArgs.push(t.nullLiteral());
}
if (tryLocsList) {
wrapArgs.push(tryLocsList);
} else if (node.async) {
wrapArgs.push(t.nullLiteral());
}
if (node.async) {
// Rename any locally declared "Promise" variable,
// to use the global one.
var currentScope = path.scope;
do {
if (currentScope.hasOwnBinding("Promise")) currentScope.rename("Promise");
} while (currentScope = currentScope.parent);
wrapArgs.push(t.identifier("Promise"));
}
var wrapCall = t.callExpression(util.runtimeProperty(node.async ? "async" : "wrap"), wrapArgs);
outerBody.push(t.returnStatement(wrapCall));
node.body = t.blockStatement(outerBody); // We injected a few new variable declarations (for every hoisted var),
// so we need to add them to the scope.
path.get("body.body").forEach(function (p) {
return p.scope.registerDeclaration(p);
});
var oldDirectives = bodyBlockPath.node.directives;
if (oldDirectives) {
// Babylon represents directives like "use strict" as elements of
// a bodyBlockPath.node.directives array. (#248)
node.body.directives = oldDirectives;
}
var wasGeneratorFunction = node.generator;
if (wasGeneratorFunction) {
node.generator = false;
}
if (node.async) {
node.async = false;
}
if (wasGeneratorFunction && t.isExpression(node)) {
util.replaceWithOrRemove(path, t.callExpression(util.runtimeProperty("mark"), [node]));
path.addComment("leading", "#__PURE__");
}
var insertedLocs = emitter.getInsertedLocs();
path.traverse({
NumericLiteral: function NumericLiteral(path) {
if (!insertedLocs.has(path.node)) {
return;
}
path.replaceWith(t.numericLiteral(path.node.value));
}
}); // Generators are processed in 'exit' handlers so that regenerator only has to run on
// an ES5 AST, but that means traversal will not pick up newly inserted references
// to things like 'regeneratorRuntime'. To avoid this, we explicitly requeue.
path.requeue();
})
}
};
}; // Check if a node should be transformed by regenerator
function shouldRegenerate(node, state) {
if (node.generator) {
if (node.async) {
// Async generator
return state.opts.asyncGenerators !== false;
} else {
// Plain generator
return state.opts.generators !== false;
}
} else if (node.async) {
// Async function
return state.opts.async !== false;
} else {
// Not a generator or async function.
return false;
}
} // Given a NodePath for a Function, return an Expression node that can be
// used to refer reliably to the function object from inside the function.
// This expression is essentially a replacement for arguments.callee, with
// the key advantage that it works in strict mode.
function getOuterFnExpr(funPath) {
var t = util.getTypes();
var node = funPath.node;
t.assertFunction(node);
if (!node.id) {
// Default-exported function declarations, and function expressions may not
// have a name to reference, so we explicitly add one.
node.id = funPath.scope.parent.generateUidIdentifier("callee");
}
if (node.generator && // Non-generator functions don't need to be marked.
t.isFunctionDeclaration(node)) {
// Return the identifier returned by runtime.mark(<node.id>).
return getMarkedFunctionId(funPath);
}
return t.clone(node.id);
}
var markInfo = new WeakMap();
function getMarkInfo(node) {
if (!markInfo.has(node)) {
markInfo.set(node, {});
}
return markInfo.get(node);
}
function getMarkedFunctionId(funPath) {
var t = util.getTypes();
var node = funPath.node;
t.assertIdentifier(node.id);
var blockPath = funPath.findParent(function (path) {
return path.isProgram() || path.isBlockStatement();
});
if (!blockPath) {
return node.id;
}
var block = blockPath.node;
_assert["default"].ok(Array.isArray(block.body));
var info = getMarkInfo(block);
if (!info.decl) {
info.decl = t.variableDeclaration("var", []);
blockPath.unshiftContainer("body", info.decl);
info.declPath = blockPath.get("body.0");
}
_assert["default"].strictEqual(info.declPath.node, info.decl); // Get a new unique identifier for our marked variable.
var markedId = blockPath.scope.generateUidIdentifier("marked");
var markCallExp = t.callExpression(util.runtimeProperty("mark"), [t.clone(node.id)]);
var index = info.decl.declarations.push(t.variableDeclarator(markedId, markCallExp)) - 1;
var markCallExpPath = info.declPath.get("declarations." + index + ".init");
_assert["default"].strictEqual(markCallExpPath.node, markCallExp);
markCallExpPath.addComment("leading", "#__PURE__");
return t.clone(markedId);
}
var argumentsThisVisitor = {
"FunctionExpression|FunctionDeclaration|Method": function FunctionExpressionFunctionDeclarationMethod(path) {
path.skip();
},
Identifier: function Identifier(path, state) {
if (path.node.name === "arguments" && util.isReference(path)) {
util.replaceWithOrRemove(path, state.getArgsId());
state.usesArguments = true;
}
},
ThisExpression: function ThisExpression(path, state) {
state.usesThis = true;
}
};
var functionSentVisitor = {
MetaProperty: function MetaProperty(path) {
var node = path.node;
if (node.meta.name === "function" && node.property.name === "sent") {
var t = util.getTypes();
util.replaceWithOrRemove(path, t.memberExpression(t.clone(this.context), t.identifier("_sent")));
}
}
};
var awaitVisitor = {
Function: function Function(path) {
path.skip(); // Don't descend into nested function scopes.
},
AwaitExpression: function AwaitExpression(path) {
var t = util.getTypes(); // Convert await expressions to yield expressions.
var argument = path.node.argument; // Transforming `await x` to `yield regeneratorRuntime.awrap(x)`
// causes the argument to be wrapped in such a way that the runtime
// can distinguish between awaited and merely yielded values.
util.replaceWithOrRemove(path, t.yieldExpression(t.callExpression(util.runtimeProperty("awrap"), [argument]), false));
}
};